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This article presents an integrative, theoretically rigorous, and methodologically detailed exposition on the
design, analysis, and numerical implementation of advanced control strategies for continuous casting
processes, emphasizing model predictive control for nonlinear parabolic partial differential equation
(PDE) systems, lattice Boltzmann method (LBM) based fluid-thermal simulation, and high-performance
computing (HPC) implementations on graphics processing units (GPUs). By synthesizing methodological
advances from state-of-the-art control theory applied to unsteady PDEs (Yu et al., 2023; Wang et al.,, 2016;
Yu et al,, 2018) with kinetic-based fluid modelling and thermodynamics captured by lattice Boltzmann
frameworks (d’Humieres et al., 2002; He et al, 1998; Lallemand & Luo, 2003), and the practical
acceleration strategies using CUDA-enabled GPU computing (Micikevicius, 2009; NVIDIA, 2010; Mudigere,
2009), the paper articulates a comprehensive pipeline: from mathematical problem formulation and
discretization strategy, through controller design and stability considerations, to efficient implementation
patterns that respect memory access, parallelism, and numerical accuracy on modern heterogeneous
architectures. The article places particular emphasis on handling convective terms in unsteady parabolic
PDEs, the computational advantages and limitations of multiple-relaxation-time LBM for thermal-acoustic
fidelity, and practical considerations when migrating model predictive control algorithms to GPUs for real-
time or near-real-time industrial use (Wang et al., 2019). The narrative critically examines the interplay
between model fidelity, controller robustness, numerical stability, and computational throughput—
highlighting trade-offs, potential failure modes such as longitudinal crack formation in hypoperitectic
steels during solidification (Konishi et al., 2002), and pathways for mitigating these through control-
informed cooling strategies (Wang et al., 2016). The synthesis culminates in an extended methodological
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blueprint suitable for researchers and practitioners seeking to develop publication-ready, production-
grade simulation-control systems for continuous casting and analogous thermofluid processes.
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INTRODUCTION

Continuous casting of steel is a complex, tightly
coupled thermofluid and solidification process
where spatially distributed thermal fields, phase
transformations, and mechanical stress evolution
interact over multiple temporal and spatial scales.
Addressing control objectives—such as preventing
surface and internal defects, optimizing cooling
trajectories to manage microstructural outcomes,
and maintaining throughput stability—requires a
fusion of accurate physical modelling, robust
control strategies, and sufficient computational
power to achieve timely decision making (Wang et
al, 2016; Yu et al.,, 2018). The consolidation of
model predictive control (MPC) frameworks for
PDE-governed systems, kinetic-based
discretizations like the lattice Boltzmann method
(LBM), and GPU-based high-throughput
computation forms a promising convergence for
managing the competing demands of accuracy,
real-time responsiveness, and scalability.

Historically, = PDE-constrained control has
encountered significant challenges rooted in the
infinite-dimensional nature of the governing

equations, the nonlinearities associated with
convection and phase change, and the
discretization-induced trade-offs between

numerical stability and control performance (Yu et
al, 2023; Wang et al, 2016). Model predictive
control is particularly attractive because it

explicitly incorporates future predictions and
constraints, enabling the handling of operational
limits and multi-variable coupling. However, its
application to two-dimensional parabolic PDEs
with convective components and nonlinearities—
typical of secondary cooling zones in continuous
casting—requires advanced numerical solvers and
optimization strategies capable of coping with stiff
PDEs and large-scale discretizations (Wang et al.,
2016; Yu et al.,, 2018).

On the simulation front, lattice Boltzmann methods
present an alternative discretization paradigm to
classical finite-difference or finite-element
approaches. Originating from kinetic theory, LBM
provides a mesoscopic perspective, modeling the
evolution of particle distribution functions whose
macroscopic moments reproduce Navier-Stokes
behaviour and thermal transport in certain limits
(McNamara & Zanetti, 1988; d’'Humieéres et al,
2002). The multiple-relaxation-time (MRT)
variants and thermally consistent models (He et al,,
1998; Lallemand & Luo, 2003) offer improved
numerical stability and control over transport
coefficients—qualities useful when carefully
resolving acoustic and thermal properties relevant
to casting flows and heat extraction.

Implementing these advanced models in a way that
supports MPC’s real-time optimization
requirements motivates the move to GPUs. GPUs
offer significant parallel throughput for structured
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grid computations and data-parallel Kkernels
characteristic of LBM and explicit PDE solvers
(Micikevicius, 2009; Dongarra et al., 2008). Yet,
obtaining practical speedups demands careful
attention to memory hierarchy, coalesced accesses,
and algorithmic resilience to floating-point and
boundary-condition idiosyncrasies (Mudigere,
2009; Lee et al.,, 2010). The computational and
algorithmic design space becomes a tripartite
optimization problem: controller performance,
numerical fidelity, and computational efficiency.

This article integrates these threads into a cohesive
narrative: it delineates mathematical formulations
for unsteady parabolic PDEs with convection in the
context of continuous casting, explicates modern
MPC schemes adapted for such systems (including
the DY-HS hybrid conjugate gradient approach for
constrained optimization problems in unsteady
PDEs), explores LBM-based thermal-fluid
simulation choices, and details GPU
implementation strategies that maintain numerical
and control integrity while maximizing throughput
(Yuetal,, 2023; Wang et al.,, 2019). In doing so, the
article critically synthesizes literature findings,
exposes open gaps, and provides detailed
methodological guidance for future experimental
and computational work.

Methodology

The methodological exposition unfolds across
three interconnected components: mathematical
and control problem formulation; numerical
discretization and simulation strategy; and high-
performance implementation and optimization.

Problem formulation and control objectives

At the heart of the continuous casting control
problem lies the management of the temperature
field and its spatiotemporal evolution, which can
be compactly represented by a nonlinear parabolic
PDE incorporating diffusive, convective, and
source/sink terms that represent cooling sprays
and latent heat release during solidification.
Practically, the control objective is to shape the
boundary and distributed cooling inputs to ensure
desired thermal trajectories, avoid defect-prone
thermal gradients, and comply with operational
constraints (Wang et al., 2016; Yu et al., 2018). The
controller must operate in a context where
measurements are spatially sparse (e.g.,
thermocouples, infrared surface measurements)
and subject to noise and latency. Model predictive
control becomes an appropriate choice because it
can incorporate system constraints and anticipate
future system evolution over a prediction horizon.

MPC for PDE systems entails embedding the
discretized PDE within an optimization problem
that minimizes a cost functional reflecting
deviations from reference temperatures, control
effort, and possibly regularization terms to
penalize undesirable spatial gradients or rapid
control variations. Constraints include actuator
bounds (spray intensities, flow rates), state
constraints (maximum allowable temperature
differentials), and possibly inequality constraints
related to material properties. The optimization
problem is typically large-scale due to spatial
discretization, non-convex if nonlinearities are

present, and time-coupled due to the PDE
dynamics. Efficient solvers such as hybrid
conjugate gradient methods that combine

descending directions from different algorithmic
philosophies (e.g., the DY-HS hybrid) are valuable
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for navigating the optimization landscape while
respecting computational budgets (Yu et al., 2023).

Discretization strategy: combining classical
and Kinetic approaches

Two broad discretization paradigms are
considered: (a) classical finite-difference/finite-
element discretizations tailored for parabolic PDEs
with convection and (b) lattice Boltzmann methods
that model mesoscopic distribution functions
whose moments yield macroscopic thermal-fluid
behaviour. The choice between these is not merely
technical; it interacts with controller design and
computational implementation.

Classical discretizations: When employing finite-
difference or finite-element schemes, the primary
concerns are numerical diffusion introduced by
upwinding schemes used to handle convection and
the stability constraints associated with explicit
time-stepping (Courant-Friedrichs-Lewy (CFL)
conditions) versus the computational complexity
of implicit solvers. Implicit solvers afford larger
time steps and improved stability for stiff diffusion-
dominated regimes but increase per-step
computational cost and require solving large linear
or nonlinear systems—an expense that must be
reconciled with the real-time demands of MPC
(Wang et al., 2016).

Lattice Boltzmann methods: The LBM offers a
convenient explicit, local-update structure well
suited to GPUs. In MRT-LBM formulations,
relaxation rates are tuned to adjust physical
viscosity and thermal diffusivity and to enhance
numerical stability (d’'Humieres et al., 2002). The
thermally consistent LBM models developed by He
et al. (1998) and analysed by Lallemand and Luo
(2003) provide a framework to capture thermal

transport with desirable acoustic and thermal
fidelity. However, applying LBM to strongly
convective, phase-changing flows requires
attention to boundary conditions, forcing terms
modelling external cooling, and coupling strategies
that incorporate latent heat effects without
destabilizing the kinetic solver. Another central
advantage of LBM is its locality: updates at a lattice
node depend only on neighbouring node values,
making it amenable to parallelization across
thousands of GPU threads (Micikevicius, 2009).

Controller-simulation
consistent models

coupling: Ensuring

A key methodological consideration is model
fidelity mismatch: MPC requires a model that is
both tractable for optimization and sufficiently
representative of reality. Using a high-fidelity LBM
or fine-grained finite-element model inside the
MPC loop may be computationally prohibitive. A
pragmatic strategy is model hierarchy: a reduced-
order model or surrogate (e.g., projection-based
reduced models, Gaussian process surrogates, or
coarser-grid PDE discretizations) can be used
within the optimization loop, while high-fidelity
simulations verify and refine control strategies
offline or asynchronously during extended
production runs (Wang et al., 2019). However,
when GPU acceleration provides sufficient
throughput, more detailed discretizations can be
used directly, reducing surrogate-model error. The
methodological challenge is to maintain stability
and control performance despite approximate
gradients or model mismatches—necessitating
robust optimization formulations and possibly the
inclusion of feedback laws or constraint tightening
to account for uncertainty.
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Optimization solver choices and the DY-HS
hybrid algorithm

Solving the large-scale optimization problem
arising from MPC for PDE systems calls for iterative
solvers that exploit problem structure. Conjugate
gradient methods are attractive for symmetric
positive-definite linear subproblems; however,
nonlinearities and nonquadratic cost functionals
require variants that can handle changing Hessian
approximations. The DY-HS hybrid algorithm (Yu
et al, 2023) synthesizes two conjugate-gradient
update schemes—each with complementary
properties regarding descent direction selection

and numerical stability—to accelerate
convergence on unsteady PDE-constrained
problems. The hybrid approach maintains

conjugacy properties essential for efficient descent
while adapting to ill-conditioning typical of
discretized PDE operators with convective
dominance. The methodological implementation
couples the optimization routine with adjoint-
based gradient computations: adjoint PDEs,
discretized consistently with forward models,
compute sensitivity information with respect to
control variables efficiently, avoiding direct
differentiation of large discretized systems.

Numerical and

treatments

integration boundary

Boundary conditions in continuous casting are
complex: convective outflow, conduction into
rollers, and localized cooling sprays induce mixed
Neumann and Robin-type conditions, while moving
boundaries and phase-change interfaces introduce
further complexity. Numerically, consistent
discretization of boundary fluxes is vital to avoid
artificial reflections or spurious heat sources that
can mislead control algorithms. LBM boundary

schemes must be carefully chosen—bounce-back,
non-equilibrium extrapolation, or immersed
boundary techniques—as each has implications for
mass and energy conservation. In classical
discretizations, ghost nodes, weak enforcement
techniques in finite elements, or characteristic-
based treatments are used to incorporate
convective fluxes without destabilizing the scheme.

High-performanceimplementation
considerations

When translating these algorithms to GPUs,
attention must focus on memory bandwidth,
thread divergence, and fine-grained
synchronization. LBM'’s streaming-and-collision
paradigm maps naturally to GPU kernels: collision
updates perform joint computations on local
distribution sets, while streaming can be
implemented as memory moves that benefit from
coalesced access patterns. For PDE-based implicit
solvers and adjoint computations, sparse linear
algebra kernels and preconditioners must be GPU-
aware; otherwise, data movement between CPU
and GPU can nullify throughput gains
(Micikevicius, 2009; Mudigere, 2009). Further,
numerical reproducibility and floating-point
behaviour change across architectures, requiring
testing and error-analysis to ensure control
policies derived from GPU-enabled simulations
remain valid when moved to plant controllers.

Verification, validation, and coupling to defect
modelling

Verification against analytical solutions or
benchmark  problems  ensures  numerical
correctness, while validation against experimental
measurements from actual casting lines assesses
model fidelity. A critical motivation for advanced
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control is defect suppression—longitudinal facial
cracks in hypoperitectic steels being a central
example  where thermal gradients and
solidification front morphology interact to create
tensile stresses that produce cracking (Konishi et
al, 2002). Incorporating phenomenological or
microstructure-aware models into the control loop
informs the cost functional, enabling direct
penalization of defect-prone conditions. However,
these couplings increase model complexity and
demand more computational power, further
stressing the high-performance implementation.

Results

This section describes, in descriptive terms, the
expected computational and control outcomes of
the integrated methodology when properly
implemented and validated. Given the article’s
theoretical orientation and constraint against
numerical tables, the results are presented as
qualitative and quantitative expectations grounded
in literature findings and method analysis.

Controller performance and stability

Hybrid conjugate-gradient solvers embedded
within MPC frameworks have been reported to
significantly reduce iteration counts and improve
convergence robustness for unsteady PDE-
constrained  optimizations compared with
conventional methods (Yu et al,, 2023). In practice,
this translates to reduced solution times per MPC
cycle when using compatible discretizations and
adjoint-based gradient evaluations. The practical
outcome is that, for moderate grid resolutions
(where the discretized state dimension is on the
order of 1074 to 1076), the hybrid approach can
deliver near-real-time control updates when
coupled with GPU-accelerated PDE solves and

efficient linear algebra kernels. Stability analysis of
MPC laws derived from such optimizations
typically relies on terminal cost and constraint
formulations; enforcing dissipativity through cost
design and ensuring accurate adjoint computations
are central to maintaining closed-loop stability in
the face of model mismatch (Wang et al., 2016; Yu
etal., 2018).

Numerical
methods

fidelity of LBM and classical

Multiple-relaxation-time LBM variants offer better
control over numerical dispersion and dissipation
compared with single-relaxation-time schemes,
which is beneficial when resolving thermal waves
and acoustic phenomena that can influence defect
formation (d'Humiéres et al., 2002; Lallemand &
Luo, 2003). The mesoscopic approach reduces
artificial numerical diffusion common with upwind
finite-difference schemes, particularly in
advection-dominated regimes. However, the LBM’s
explicit nature places constraints on time-step
sizes tied to lattice speeds—constraints that can be
mitigated by using coarser lattices supplemented
by subgrid models or employing operator-splitting
techniques for stiff source terms (He et al., 1998).

Computational GPU

acceleration

throughput and

Benchmarking studies in related fields indicate
that GPU implementations of structured-grid
solvers, including LBM and well-optimized finite-
difference codes, can achieve order-of-magnitude
throughput improvements over single-core CPU
implementations and substantial improvements
over multi-core CPU runs when architects and
coders exploit memory coalescing and shared-
memory usage patterns (Micikevicius, 2009; Lee et
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al, 2010). However, the realized acceleration
depends heavily on arithmetic intensity, memory
bandwidth, and algorithmic locality. For MPC loops
incorporating adjoint PDEs, the need to solve
forward and backward in time can roughly double
the computational burden—but this cost remains
amenable to parallelization since both forward and
backward solves consist of data-parallel time-step
computations.

Impact on defect mitigation strategies

Integrating high-fidelity thermal models into MPC
enables proactive cooling adjustments that reduce
detrimental thermal gradients, thereby lowering
the risk of longitudinal cracking as characterized
by Konishi et al. (2002). In practice, optimized
spray patterns and staged cooling intensities
derived from MPC tend to flatten near-surface
temperature gradients and reduce thermal shock
during phase transitions. The multidimensional
control afforded by distributed actuators (multiple
spray zones) allows the controller to trade off
increased  control effort against defect
probability—optimizations that are achievable
only when simulations are sufficiently predictive
and the controller can operate on relevant
timescales (Wang et al., 2016).

Sensitivity and robustness outcomes

Adjoint-based gradient computations are sensitive
to discretization choices and round-off error,
especially in long-horizon MPC problems.
Sensitivity analysis reveals that control solutions
are robust to moderate measurement noise when
cost functionals include state-regularization terms
and when constraints account for uncertainties
through robust optimization techniques or
constraint tightening. The DY-HS hybrid algorithm

shows resilience to ill-conditioning introduced by
high Peclet numbers (convection dominance) in
the spatial discretization, which improves the
robustness of computed controls compared to
naive gradient-descent methods (Yu et al., 2023).

Discussion

The methodological synthesis articulated above
intersects several important themes: the balancing
act between model fidelity and computational
tractability, the role of discretization choice in
determining both numerical and control outcomes,
and the practicalities of deploying high-throughput
computing resources to support near-real-time
optimization.

Trade-offs between fidelity and performance

High-fidelity LBM models capture mesoscopic
transport phenomena with desirable numerical
properties, yet their explicit structure and fine
spatial requirements can inflate computational
cost. Conversely, reduced models or coarser finite-
element discretizations shrink optimization
problem sizes and make MPC cycles feasible on
limited hardware but incur model mismatch risks.
The pragmatic path lies in multilevel model
hierarchies: using faster surrogates within the
control loop while periodically recalibrating them
with high-fidelity GPU-accelerated simulations.
Such hierarchical approaches preserve real-time
responsiveness without sacrificing long-term
accuracy (Wang et al, 2019). Crucially, any
surrogate must be constructed with an eye toward
preserving control-relevant dynamics—modes
and frequencies that significantly influence the cost
or constraint satisfaction.

Numerical stability and controller robustness
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Convection-dominated @~ PDEs, common in
continuous casting due to transport of enthalpy by
moving material and sprays, challenge numerical
schemes and adjunct optimization solvers.
Artificial numerical diffusion from stabilizing
discretizations can distort gradient information
used by the optimizer, leading to suboptimal or
even destabilizing control actions. The MRT-LBM
and properly designed finite-element stabilization
techniques can mitigate these effects, but one must
carefully calibrate relaxation parameters and
stabilization coefficients so that they reflect
physical dissipation rather than numerical
artefacts (d’Humiéres et al.,, 2002; Lallemand &
Luo, 2003). Controller robustness can be improved
by incorporating model-form uncertainty into the
MPC formulation (e.g, min-max or stochastic
MPC), which cushions performance against
residual model errors.

GPU-specific implementation challenges

GPU acceleration is not a panacea. Achieving
reliable, portable, and maintainable code requires
careful software engineering. Kernel fusion to
reduce global memory trafficc use of shared
memory to accelerate local stencils, and attention
to numerical reproducibility when parallel
reductions are performed are all necessary for
robust deployments (Micikevicius, 2009;
Mudigere, 2009). Additionally, the hardware
landscape evolves rapidly; achieving long-term
maintainability may require abstraction layers that
can target different backends (CUDA, HIP, or
vendor-specific accelerators) without rewriting
core numerical kernels. Furthermore, debugging
and verifying GPU-accelerated adjoint
computations can be significantly harder than for

CPU code due to limited debuggers and
nondeterministic thread scheduling behaviors.

Practical deployment considerations

Bringing these techniques to production casting
lines introduces a range of non-technical
constraints: actuator latencies, sensor placement
limitations, safety regulations, and operator
acceptance. The controller must not only be
mathematically stable and computationally
efficient but also integrate with legacy control
systems and adhere to safety-critical response
times. A human-in-the-loop design is often
prudent—initial validation phases benefit from
supervisory human operators who can override
control actions or provide high-level guidance
while system performance is evaluated.

Open research questions and future directions

Several avenues remain open for deeper
exploration. First, rigorous proofs of closed-loop
stability for MPC schemes using surrogate models
warrant attention, especially when surrogate
errors are non-negligible and time-dependent.
Second, the incorporation of phase-change kinetics
and microstructure evolution into controllers in a
computationally tractable way remains
challenging: models that capture defect nucleation
and growth at a fidelity necessary for control-
based mitigation are presently too expensive to run
in real time. Third, exploring mixed-precision
computing strategies that trade some numerical
precision for throughput on GPUs may unlock new
performance regimes; this requires quantifying the
effect of rounding errors on adjoint sensitivities
and control decisions (Lee et al, 2010;
Micikevicius, 2009). Finally, machine learning-
based surrogates, trained from GPU-accelerated
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high-fidelity simulations, present an attractive
path to combine predictive power with low
evaluation cost—but their integration into safety-
critical MPC frameworks requires careful
constraints enforcement and interpretability
measures.

Limitations

This article has focused primarily on the
conceptual and methodological synthesis rather
than on reporting experimental or production-line
data. The absence of explicit numerical
experiments in this manuscript limits the ability to
provide measured speedups or quantified control
improvements. Nevertheless, the methodological
guidance draws directly on established literature
and reported benchmarks, offering a principled
pathway toward empirical evaluation.

Conclusion

Integrating model predictive control for unsteady
parabolic PDEs, lattice Boltzmann-based thermal-
fluid simulation, and GPU-accelerated numerical
implementations offers a compelling framework
for addressing the complex control challenges of
continuous casting. The confluence of advanced
optimization algorithms (such as the DY-HS hybrid
conjugate  gradient),  numerically = robust
discretizations (MRT-LBM and stabilized finite-
element schemes), and careful GPU-aware
implementation strategies can produce practical
controllers that are both predictive and responsive.
Key to success are consistent adjoint computations,
hierarchical model strategies that balance fidelity
and computational cost, and software engineering
practices that preserve numerical accuracy while
exploiting hardware parallelism. Future work

should prioritize rigorous closed-loop stability
analysis  with  surrogate-in-the-loop = MPC,
experimental validation on industrial casting lines,
and exploration of mixed-precision and machine

learning  surrogates to further enhance
computational tractability and control
effectiveness.
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