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ABSTRACT 

This article presents an integrative, theoretically rigorous, and methodologically detailed exposition on the 

design, analysis, and numerical implementation of advanced control strategies for continuous casting 

processes, emphasizing model predictive control for nonlinear parabolic partial differential equation 

(PDE) systems, lattice Boltzmann method (LBM) based fluid–thermal simulation, and high-performance 

computing (HPC) implementations on graphics processing units (GPUs). By synthesizing methodological 

advances from state-of-the-art control theory applied to unsteady PDEs (Yu et al., 2023; Wang et al., 2016; 

Yu et al., 2018) with kinetic-based fluid modelling and thermodynamics captured by lattice Boltzmann 

frameworks (d’Humières et al., 2002; He et al., 1998; Lallemand & Luo, 2003), and the practical 

acceleration strategies using CUDA-enabled GPU computing (Micikevicius, 2009; NVIDIA, 2010; Mudigere, 

2009), the paper articulates a comprehensive pipeline: from mathematical problem formulation and 

discretization strategy, through controller design and stability considerations, to efficient implementation 

patterns that respect memory access, parallelism, and numerical accuracy on modern heterogeneous 

architectures. The article places particular emphasis on handling convective terms in unsteady parabolic 

PDEs, the computational advantages and limitations of multiple-relaxation-time LBM for thermal-acoustic 

fidelity, and practical considerations when migrating model predictive control algorithms to GPUs for real-

time or near-real-time industrial use (Wang et al., 2019). The narrative critically examines the interplay 

between model fidelity, controller robustness, numerical stability, and computational throughput—

highlighting trade-offs, potential failure modes such as longitudinal crack formation in hypoperitectic 

steels during solidification (Konishi et al., 2002), and pathways for mitigating these through control-

informed cooling strategies (Wang et al., 2016). The synthesis culminates in an extended methodological 
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blueprint suitable for researchers and practitioners seeking to develop publication-ready, production-

grade simulation-control systems for continuous casting and analogous thermofluid processes. 

KEYWORDS 

continuous casting; model predictive control; parabolic PDEs; lattice Boltzmann method; GPU acceleration; 
thermal-fluid simulation; numerical stability

INTRODUCTION  

Continuous casting of steel is a complex, tightly 

coupled thermofluid and solidification process 

where spatially distributed thermal fields, phase 

transformations, and mechanical stress evolution 

interact over multiple temporal and spatial scales. 

Addressing control objectives—such as preventing 

surface and internal defects, optimizing cooling 

trajectories to manage microstructural outcomes, 

and maintaining throughput stability—requires a 

fusion of accurate physical modelling, robust 

control strategies, and sufficient computational 

power to achieve timely decision making (Wang et 

al., 2016; Yu et al., 2018). The consolidation of 

model predictive control (MPC) frameworks for 

PDE-governed systems, kinetic-based 

discretizations like the lattice Boltzmann method 

(LBM), and GPU-based high-throughput 

computation forms a promising convergence for 

managing the competing demands of accuracy, 

real-time responsiveness, and scalability. 

Historically, PDE-constrained control has 

encountered significant challenges rooted in the 

infinite-dimensional nature of the governing 

equations, the nonlinearities associated with 

convection and phase change, and the 

discretization-induced trade-offs between 

numerical stability and control performance (Yu et 

al., 2023; Wang et al., 2016). Model predictive 

control is particularly attractive because it 

explicitly incorporates future predictions and 

constraints, enabling the handling of operational 

limits and multi-variable coupling. However, its 

application to two-dimensional parabolic PDEs 

with convective components and nonlinearities—

typical of secondary cooling zones in continuous 

casting—requires advanced numerical solvers and 

optimization strategies capable of coping with stiff 

PDEs and large-scale discretizations (Wang et al., 
2016; Yu et al., 2018). 

On the simulation front, lattice Boltzmann methods 

present an alternative discretization paradigm to 

classical finite-difference or finite-element 

approaches. Originating from kinetic theory, LBM 

provides a mesoscopic perspective, modeling the 

evolution of particle distribution functions whose 

macroscopic moments reproduce Navier–Stokes 

behaviour and thermal transport in certain limits 

(McNamara & Zanetti, 1988; d’Humières et al., 

2002). The multiple-relaxation-time (MRT) 

variants and thermally consistent models (He et al., 

1998; Lallemand & Luo, 2003) offer improved 

numerical stability and control over transport 

coefficients—qualities useful when carefully 

resolving acoustic and thermal properties relevant 
to casting flows and heat extraction. 

Implementing these advanced models in a way that 

supports MPC’s real-time optimization 

requirements motivates the move to GPUs. GPUs 

offer significant parallel throughput for structured 
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grid computations and data-parallel kernels 

characteristic of LBM and explicit PDE solvers 

(Micikevicius, 2009; Dongarra et al., 2008). Yet, 

obtaining practical speedups demands careful 

attention to memory hierarchy, coalesced accesses, 

and algorithmic resilience to floating-point and 

boundary-condition idiosyncrasies (Mudigere, 

2009; Lee et al., 2010). The computational and 

algorithmic design space becomes a tripartite 

optimization problem: controller performance, 
numerical fidelity, and computational efficiency. 

This article integrates these threads into a cohesive 

narrative: it delineates mathematical formulations 

for unsteady parabolic PDEs with convection in the 

context of continuous casting, explicates modern 

MPC schemes adapted for such systems (including 

the DY-HS hybrid conjugate gradient approach for 

constrained optimization problems in unsteady 

PDEs), explores LBM-based thermal-fluid 

simulation choices, and details GPU 

implementation strategies that maintain numerical 

and control integrity while maximizing throughput 

(Yu et al., 2023; Wang et al., 2019). In doing so, the 

article critically synthesizes literature findings, 

exposes open gaps, and provides detailed 

methodological guidance for future experimental 

and computational work. 

Methodology 

The methodological exposition unfolds across 

three interconnected components: mathematical 

and control problem formulation; numerical 

discretization and simulation strategy; and high-

performance implementation and optimization. 

Problem formulation and control objectives 

At the heart of the continuous casting control 

problem lies the management of the temperature 

field and its spatiotemporal evolution, which can 

be compactly represented by a nonlinear parabolic 

PDE incorporating diffusive, convective, and 

source/sink terms that represent cooling sprays 

and latent heat release during solidification. 

Practically, the control objective is to shape the 

boundary and distributed cooling inputs to ensure 

desired thermal trajectories, avoid defect-prone 

thermal gradients, and comply with operational 

constraints (Wang et al., 2016; Yu et al., 2018). The 

controller must operate in a context where 

measurements are spatially sparse (e.g., 

thermocouples, infrared surface measurements) 

and subject to noise and latency. Model predictive 

control becomes an appropriate choice because it 

can incorporate system constraints and anticipate 
future system evolution over a prediction horizon. 

MPC for PDE systems entails embedding the 

discretized PDE within an optimization problem 

that minimizes a cost functional reflecting 

deviations from reference temperatures, control 

effort, and possibly regularization terms to 

penalize undesirable spatial gradients or rapid 

control variations. Constraints include actuator 

bounds (spray intensities, flow rates), state 

constraints (maximum allowable temperature 

differentials), and possibly inequality constraints 

related to material properties. The optimization 

problem is typically large-scale due to spatial 

discretization, non-convex if nonlinearities are 

present, and time-coupled due to the PDE 

dynamics. Efficient solvers such as hybrid 

conjugate gradient methods that combine 

descending directions from different algorithmic 

philosophies (e.g., the DY-HS hybrid) are valuable 
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for navigating the optimization landscape while 
respecting computational budgets (Yu et al., 2023). 

Discretization strategy: combining classical 
and kinetic approaches 

Two broad discretization paradigms are 

considered: (a) classical finite-difference/finite-

element discretizations tailored for parabolic PDEs 

with convection and (b) lattice Boltzmann methods 

that model mesoscopic distribution functions 

whose moments yield macroscopic thermal-fluid 

behaviour. The choice between these is not merely 

technical; it interacts with controller design and 
computational implementation. 

Classical discretizations: When employing finite-

difference or finite-element schemes, the primary 

concerns are numerical diffusion introduced by 

upwinding schemes used to handle convection and 

the stability constraints associated with explicit 

time-stepping (Courant–Friedrichs–Lewy (CFL) 

conditions) versus the computational complexity 

of implicit solvers. Implicit solvers afford larger 

time steps and improved stability for stiff diffusion-

dominated regimes but increase per-step 

computational cost and require solving large linear 

or nonlinear systems—an expense that must be 

reconciled with the real-time demands of MPC 
(Wang et al., 2016). 

Lattice Boltzmann methods: The LBM offers a 

convenient explicit, local-update structure well 

suited to GPUs. In MRT-LBM formulations, 

relaxation rates are tuned to adjust physical 

viscosity and thermal diffusivity and to enhance 

numerical stability (d’Humières et al., 2002). The 

thermally consistent LBM models developed by He 

et al. (1998) and analysed by Lallemand and Luo 

(2003) provide a framework to capture thermal 

transport with desirable acoustic and thermal 

fidelity. However, applying LBM to strongly 

convective, phase-changing flows requires 

attention to boundary conditions, forcing terms 

modelling external cooling, and coupling strategies 

that incorporate latent heat effects without 

destabilizing the kinetic solver. Another central 

advantage of LBM is its locality: updates at a lattice 

node depend only on neighbouring node values, 

making it amenable to parallelization across 
thousands of GPU threads (Micikevicius, 2009). 

Controller-simulation coupling: Ensuring 

consistent models 

A key methodological consideration is model 

fidelity mismatch: MPC requires a model that is 

both tractable for optimization and sufficiently 

representative of reality. Using a high-fidelity LBM 

or fine-grained finite-element model inside the 

MPC loop may be computationally prohibitive. A 

pragmatic strategy is model hierarchy: a reduced-

order model or surrogate (e.g., projection-based 

reduced models, Gaussian process surrogates, or 

coarser-grid PDE discretizations) can be used 

within the optimization loop, while high-fidelity 

simulations verify and refine control strategies 

offline or asynchronously during extended 

production runs (Wang et al., 2019). However, 

when GPU acceleration provides sufficient 

throughput, more detailed discretizations can be 

used directly, reducing surrogate-model error. The 

methodological challenge is to maintain stability 

and control performance despite approximate 

gradients or model mismatches—necessitating 

robust optimization formulations and possibly the 

inclusion of feedback laws or constraint tightening 
to account for uncertainty. 
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Optimization solver choices and the DY-HS 
hybrid algorithm 

Solving the large-scale optimization problem 

arising from MPC for PDE systems calls for iterative 

solvers that exploit problem structure. Conjugate 

gradient methods are attractive for symmetric 

positive-definite linear subproblems; however, 

nonlinearities and nonquadratic cost functionals 

require variants that can handle changing Hessian 

approximations. The DY-HS hybrid algorithm (Yu 

et al., 2023) synthesizes two conjugate-gradient 

update schemes—each with complementary 

properties regarding descent direction selection 

and numerical stability—to accelerate 

convergence on unsteady PDE-constrained 

problems. The hybrid approach maintains 

conjugacy properties essential for efficient descent 

while adapting to ill-conditioning typical of 

discretized PDE operators with convective 

dominance. The methodological implementation 

couples the optimization routine with adjoint-

based gradient computations: adjoint PDEs, 

discretized consistently with forward models, 

compute sensitivity information with respect to 

control variables efficiently, avoiding direct 
differentiation of large discretized systems. 

Numerical integration and boundary 
treatments 

Boundary conditions in continuous casting are 

complex: convective outflow, conduction into 

rollers, and localized cooling sprays induce mixed 

Neumann and Robin-type conditions, while moving 

boundaries and phase-change interfaces introduce 

further complexity. Numerically, consistent 

discretization of boundary fluxes is vital to avoid 

artificial reflections or spurious heat sources that 

can mislead control algorithms. LBM boundary 

schemes must be carefully chosen—bounce-back, 

non-equilibrium extrapolation, or immersed 

boundary techniques—as each has implications for 

mass and energy conservation. In classical 

discretizations, ghost nodes, weak enforcement 

techniques in finite elements, or characteristic-

based treatments are used to incorporate 
convective fluxes without destabilizing the scheme. 

High-performanceimplementation 
considerations 

When translating these algorithms to GPUs, 

attention must focus on memory bandwidth, 

thread divergence, and fine-grained 

synchronization. LBM’s streaming-and-collision 

paradigm maps naturally to GPU kernels: collision 

updates perform joint computations on local 

distribution sets, while streaming can be 

implemented as memory moves that benefit from 

coalesced access patterns. For PDE-based implicit 

solvers and adjoint computations, sparse linear 

algebra kernels and preconditioners must be GPU-

aware; otherwise, data movement between CPU 

and GPU can nullify throughput gains 

(Micikevicius, 2009; Mudigere, 2009). Further, 

numerical reproducibility and floating-point 

behaviour change across architectures, requiring 

testing and error-analysis to ensure control 

policies derived from GPU-enabled simulations 

remain valid when moved to plant controllers. 

Verification, validation, and coupling to defect 
modelling 

Verification against analytical solutions or 

benchmark problems ensures numerical 

correctness, while validation against experimental 

measurements from actual casting lines assesses 

model fidelity. A critical motivation for advanced 
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control is defect suppression—longitudinal facial 

cracks in hypoperitectic steels being a central 

example where thermal gradients and 

solidification front morphology interact to create 

tensile stresses that produce cracking (Konishi et 

al., 2002). Incorporating phenomenological or 

microstructure-aware models into the control loop 

informs the cost functional, enabling direct 

penalization of defect-prone conditions. However, 

these couplings increase model complexity and 

demand more computational power, further 

stressing the high-performance implementation. 

Results 

This section describes, in descriptive terms, the 

expected computational and control outcomes of 

the integrated methodology when properly 

implemented and validated. Given the article’s 

theoretical orientation and constraint against 

numerical tables, the results are presented as 

qualitative and quantitative expectations grounded 

in literature findings and method analysis. 

Controller performance and stability 

Hybrid conjugate-gradient solvers embedded 

within MPC frameworks have been reported to 

significantly reduce iteration counts and improve 

convergence robustness for unsteady PDE-

constrained optimizations compared with 

conventional methods (Yu et al., 2023). In practice, 

this translates to reduced solution times per MPC 

cycle when using compatible discretizations and 

adjoint-based gradient evaluations. The practical 

outcome is that, for moderate grid resolutions 

(where the discretized state dimension is on the 

order of 10^4 to 10^6), the hybrid approach can 

deliver near-real-time control updates when 

coupled with GPU-accelerated PDE solves and 

efficient linear algebra kernels. Stability analysis of 

MPC laws derived from such optimizations 

typically relies on terminal cost and constraint 

formulations; enforcing dissipativity through cost 

design and ensuring accurate adjoint computations 

are central to maintaining closed-loop stability in 

the face of model mismatch (Wang et al., 2016; Yu 
et al., 2018). 

Numerical fidelity of LBM and classical 
methods 

Multiple-relaxation-time LBM variants offer better 

control over numerical dispersion and dissipation 

compared with single-relaxation-time schemes, 

which is beneficial when resolving thermal waves 

and acoustic phenomena that can influence defect 

formation (d’Humières et al., 2002; Lallemand & 

Luo, 2003). The mesoscopic approach reduces 

artificial numerical diffusion common with upwind 

finite-difference schemes, particularly in 

advection-dominated regimes. However, the LBM’s 

explicit nature places constraints on time-step 

sizes tied to lattice speeds—constraints that can be 

mitigated by using coarser lattices supplemented 

by subgrid models or employing operator-splitting 

techniques for stiff source terms (He et al., 1998). 

Computational throughput and GPU 
acceleration 

Benchmarking studies in related fields indicate 

that GPU implementations of structured-grid 

solvers, including LBM and well-optimized finite-

difference codes, can achieve order-of-magnitude 

throughput improvements over single-core CPU 

implementations and substantial improvements 

over multi-core CPU runs when architects and 

coders exploit memory coalescing and shared-

memory usage patterns (Micikevicius, 2009; Lee et 
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al., 2010). However, the realized acceleration 

depends heavily on arithmetic intensity, memory 

bandwidth, and algorithmic locality. For MPC loops 

incorporating adjoint PDEs, the need to solve 

forward and backward in time can roughly double 

the computational burden—but this cost remains 

amenable to parallelization since both forward and 

backward solves consist of data-parallel time-step 

computations. 

Impact on defect mitigation strategies 

Integrating high-fidelity thermal models into MPC 

enables proactive cooling adjustments that reduce 

detrimental thermal gradients, thereby lowering 

the risk of longitudinal cracking as characterized 

by Konishi et al. (2002). In practice, optimized 

spray patterns and staged cooling intensities 

derived from MPC tend to flatten near-surface 

temperature gradients and reduce thermal shock 

during phase transitions. The multidimensional 

control afforded by distributed actuators (multiple 

spray zones) allows the controller to trade off 

increased control effort against defect 

probability—optimizations that are achievable 

only when simulations are sufficiently predictive 

and the controller can operate on relevant 
timescales (Wang et al., 2016). 

Sensitivity and robustness outcomes 

Adjoint-based gradient computations are sensitive 

to discretization choices and round-off error, 

especially in long-horizon MPC problems. 

Sensitivity analysis reveals that control solutions 

are robust to moderate measurement noise when 

cost functionals include state-regularization terms 

and when constraints account for uncertainties 

through robust optimization techniques or 

constraint tightening. The DY-HS hybrid algorithm 

shows resilience to ill-conditioning introduced by 

high Peclet numbers (convection dominance) in 

the spatial discretization, which improves the 

robustness of computed controls compared to 

naive gradient-descent methods (Yu et al., 2023). 

Discussion 

The methodological synthesis articulated above 

intersects several important themes: the balancing 

act between model fidelity and computational 

tractability, the role of discretization choice in 

determining both numerical and control outcomes, 

and the practicalities of deploying high-throughput 

computing resources to support near-real-time 
optimization. 

Trade-offs between fidelity and performance 

High-fidelity LBM models capture mesoscopic 

transport phenomena with desirable numerical 

properties, yet their explicit structure and fine 

spatial requirements can inflate computational 

cost. Conversely, reduced models or coarser finite-

element discretizations shrink optimization 

problem sizes and make MPC cycles feasible on 

limited hardware but incur model mismatch risks. 

The pragmatic path lies in multilevel model 

hierarchies: using faster surrogates within the 

control loop while periodically recalibrating them 

with high-fidelity GPU-accelerated simulations. 

Such hierarchical approaches preserve real-time 

responsiveness without sacrificing long-term 

accuracy (Wang et al., 2019). Crucially, any 

surrogate must be constructed with an eye toward 

preserving control-relevant dynamics—modes 

and frequencies that significantly influence the cost 

or constraint satisfaction. 

Numerical stability and controller robustness 
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Convection-dominated PDEs, common in 

continuous casting due to transport of enthalpy by 

moving material and sprays, challenge numerical 

schemes and adjunct optimization solvers. 

Artificial numerical diffusion from stabilizing 

discretizations can distort gradient information 

used by the optimizer, leading to suboptimal or 

even destabilizing control actions. The MRT-LBM 

and properly designed finite-element stabilization 

techniques can mitigate these effects, but one must 

carefully calibrate relaxation parameters and 

stabilization coefficients so that they reflect 

physical dissipation rather than numerical 

artefacts (d’Humières et al., 2002; Lallemand & 

Luo, 2003). Controller robustness can be improved 

by incorporating model-form uncertainty into the 

MPC formulation (e.g., min–max or stochastic 

MPC), which cushions performance against 
residual model errors. 

GPU-specific implementation challenges 

GPU acceleration is not a panacea. Achieving 

reliable, portable, and maintainable code requires 

careful software engineering. Kernel fusion to 

reduce global memory traffic, use of shared 

memory to accelerate local stencils, and attention 

to numerical reproducibility when parallel 

reductions are performed are all necessary for 

robust deployments (Micikevicius, 2009; 

Mudigere, 2009). Additionally, the hardware 

landscape evolves rapidly; achieving long-term 

maintainability may require abstraction layers that 

can target different backends (CUDA, HIP, or 

vendor-specific accelerators) without rewriting 

core numerical kernels. Furthermore, debugging 

and verifying GPU-accelerated adjoint 

computations can be significantly harder than for 

CPU code due to limited debuggers and 
nondeterministic thread scheduling behaviors. 

Practical deployment considerations 

Bringing these techniques to production casting 

lines introduces a range of non-technical 

constraints: actuator latencies, sensor placement 

limitations, safety regulations, and operator 

acceptance. The controller must not only be 

mathematically stable and computationally 

efficient but also integrate with legacy control 

systems and adhere to safety-critical response 

times. A human–in-the-loop design is often 

prudent—initial validation phases benefit from 

supervisory human operators who can override 

control actions or provide high-level guidance 

while system performance is evaluated. 

Open research questions and future directions 

Several avenues remain open for deeper 

exploration. First, rigorous proofs of closed-loop 

stability for MPC schemes using surrogate models 

warrant attention, especially when surrogate 

errors are non-negligible and time-dependent. 

Second, the incorporation of phase-change kinetics 

and microstructure evolution into controllers in a 

computationally tractable way remains 

challenging: models that capture defect nucleation 

and growth at a fidelity necessary for control-

based mitigation are presently too expensive to run 

in real time. Third, exploring mixed-precision 

computing strategies that trade some numerical 

precision for throughput on GPUs may unlock new 

performance regimes; this requires quantifying the 

effect of rounding errors on adjoint sensitivities 

and control decisions (Lee et al., 2010; 

Micikevicius, 2009). Finally, machine learning–

based surrogates, trained from GPU-accelerated 
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high-fidelity simulations, present an attractive 

path to combine predictive power with low 

evaluation cost—but their integration into safety-

critical MPC frameworks requires careful 

constraints enforcement and interpretability 
measures. 

Limitations 

This article has focused primarily on the 

conceptual and methodological synthesis rather 

than on reporting experimental or production-line 

data. The absence of explicit numerical 

experiments in this manuscript limits the ability to 

provide measured speedups or quantified control 

improvements. Nevertheless, the methodological 

guidance draws directly on established literature 

and reported benchmarks, offering a principled 

pathway toward empirical evaluation. 

Conclusion 

Integrating model predictive control for unsteady 

parabolic PDEs, lattice Boltzmann–based thermal-

fluid simulation, and GPU-accelerated numerical 

implementations offers a compelling framework 

for addressing the complex control challenges of 

continuous casting. The confluence of advanced 

optimization algorithms (such as the DY-HS hybrid 

conjugate gradient), numerically robust 

discretizations (MRT-LBM and stabilized finite-

element schemes), and careful GPU-aware 

implementation strategies can produce practical 

controllers that are both predictive and responsive. 

Key to success are consistent adjoint computations, 

hierarchical model strategies that balance fidelity 

and computational cost, and software engineering 

practices that preserve numerical accuracy while 

exploiting hardware parallelism. Future work 

should prioritize rigorous closed-loop stability 

analysis with surrogate-in-the-loop MPC, 

experimental validation on industrial casting lines, 

and exploration of mixed-precision and machine 

learning surrogates to further enhance 

computational tractability and control 

effectiveness. 
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