
Volume 05 Issue 11-2025 1

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

ABSTRACT

The increasing maturity of large language model (LLM)–based code generation tools offers unprecedented

opportunities to accelerate software development, particularly in domains requiring rapid prototyping,

business process automation, and enterprise application deployment. This paper examines the theoretical

and practical implications of integrating LLM-driven coding assistants with enterprise systems

architecture, focusing on performance impacts, maintainability, and alignment with business process

management (BPM) objectives. Drawing on publicly documented features of tools such as GitHub Copilot

and Cursor, as well as established best practices in software engineering and enterprise resource planning

(ERP), we perform a conceptual comparative analysis of traditional development workflows versus LLM-

augmented workflows. We further analyze empirical findings from recent performance studies of CRUD

(Create, Read, Update, Delete) operations in Java-based persistence frameworks. The study explores how

LLM-generated boilerplate accelerates initial development yet may introduce inefficiencies or readability

challenges if not followed by disciplined refactoring (based on principles from refactoring literature). We

then connect these technical outcomes to enterprise-level business process objectives — such as supply

chain modeling, automation through robotic process automation (RPA), and ERP integration — to assess

the broader organizational impacts. We find that while LLM-driven development significantly reduces

development time and lowers the barrier to entry for non-expert developers, there exist trade-offs in

runtime performance, maintainability, and scalability — especially when database interactions are

abstracted without consideration of optimized data access patterns. To manage these trade-offs, we

propose a hybrid workflow combining LLM-assisted code generation, systematic refactoring, and

Journal Website:

http://sciencebring.co

m/index.php/ijasr

Copyright: Original

content from this work

may be used under the

terms of the creative

commons attributes

4.0 licence.

 Research Article

Integrating Large Language Model–Driven Code Generation

and Business Process Automation: Impacts on Enterprise

Systems Performance and Maintainability

Submission Date: November 20, 2025, Accepted Date: December 01, 2025,

Published Date: December 17, 2025

Dr. Arjun Patel
Global Institute of Transport Studies, University of Lisbon

Volume 05 Issue 11-2025 2

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

performance validation as part of the release pipeline. We conclude with a roadmap for future empirical

evaluation and integration strategies to maximize business value while minimizing technical debt.

KEYWORDS

Large language models, Code generation, Business process automation, Enterprise systems, Software

maintainability, Performance analysis, CRUD operations

INTRODUCTION

In recent years, software development has

undergone a rapid transformation, driven by

advances in artificial intelligence and machine

learning, particularly in the domain of large

language models (LLMs). LLM-based coding

assistants such as GitHub Copilot and Cursor have

emerged as powerful tools that can generate code

snippets, boilerplate, and even complex functions

based on natural language prompts (GitHub

Copilot, 2025; Cursor, 2025). Concurrently,

enterprises are under growing pressure to

accelerate business process automation, adopt ERP

systems, and streamline supply chain operations to

remain competitive (Davenport, 1998; Jacobs &

Weston, 2007; Min & Zhou, 2002).

Traditional software development pipelines for

enterprise systems are often lengthy, labor-

intensive, and error-prone. Developers must write,

test, maintain, and refactor large codebases—

particularly the layers that interface with

databases and enterprise resource planning

modules. Persistence frameworks like JPA,

Hibernate, or Spring Data JPA are widely used to

simplify database interactions, yet as recent

studies show, their performance characteristics

vary significantly depending on usage patterns

(Bonteanu, Tudose & Anghel, 2024).

LLM-driven code generation promises to reduce

boilerplate, democratize coding, and enable faster

deployment of business logic. At the same time,

organizations are increasingly automating

workflows through robotic process automation

(RPA) and structured business process

management (BPM) strategies (Aguirre &

Rodriguez, 2017; Van der Aalst, 2013). The

convergence of LLM-based development tools with

BPM and ERP introduces the possibility of a

paradigm shift: from hand-coded enterprise

systems to "automatically generated and managed"

business logic. However, this convergence also

raises critical questions: Do LLM-generated

systems perform adequately? Are they

maintainable over time? Do they align with best

practices in software design and enterprise

architecture? How do they impact business-

process efficiency?

This paper aims to provide a comprehensive

analysis of these questions. By synthesizing

insights from LLM engineering literature (Iusztin &

Labonne, 2024; Raschka, 2024), software

engineering best practices (Fowler, 2018),

empirical performance studies of persistence

frameworks (Bonteanu, Tudose & Anghel, 2023;

Volume 05 Issue 11-2025 3

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

2024; Tudose, 2023), and BPM/ERP research

(Davenport, 1998; Jacobs & Weston, 2007; Van der

Aalst, 2013; Min & Zhou, 2002), we examine the

potential and pitfalls of integrating LLM-driven

development into enterprise-scale business

process automation. In so doing, we identify a

critical gap: the lack of systematic, performance-

aware workflows that bridge AI-assisted coding

and enterprise operations. We propose a hybrid

development workflow that integrates LLM

assistance, rigorous refactoring, and performance

validation — aiming to maximize business value

while preserving maintainability and scalability.

Literature Gap and Problem Statement

Existing literature on LLM-assisted development

primarily focuses on productivity gains, code

correctness, and human–AI interaction in coding

tasks (Iusztin & Labonne, 2024; Raschka, 2024).

Meanwhile, performance analysis studies of

enterprise persistence frameworks examine CRUD

operations and database efficiency (Bonteanu,

Tudose & Anghel, 2023; 2024; Tudose, 2023). On

the BPM side, research explores automation at the

process and organizational level — through ERP

adoption, RPA, and supply chain modeling (Aguirre

& Rodriguez, 2017; Davenport, 1998; Jacobs &

Weston, 2007; Min & Zhou, 2002; Van der Aalst,

2013). However, there is little to no work that ties

together LLM-driven development, persistence

performance, and business process automation in

a unified framework. In particular, how do code-

generation tools influence the performance and

maintainability of enterprise systems that

underpin BPM workflows?

The problem, then, is multidimensional: while LLM

tools dramatically speed up development,

enterprises cannot afford to sacrifice performance,

scalability, or maintainability — especially in

throughput-sensitive environments (e.g., high-

frequency supply chain operations, large-scale ERP

data access). Without rigorous integration

strategies, LLM-generated solutions may create

technical debt, performance bottlenecks, or brittle

architecture that fails under enterprise load. There

is a pressing need for a structured methodology to

combine the strengths of LLM-assisted

development with the rigors of software

engineering and enterprise performance demands.

This paper seeks to fill that gap by proposing such

a methodology, drawing on cross-disciplinary

insights to outline best practices, potential pitfalls,

and a roadmap for real-world adoption.

Methodology

Given the emergent nature of LLM-driven

enterprise development and the scarcity of

publicly available empirical data, this study adopts

a conceptual and comparative research

methodology, anchored in a review of documented

tool capabilities, empirical performance studies,

and established enterprise research. The research

proceeds in three stages: (1) characterization of

LLM-assisted coding tools and workflows; (2)

analysis of performance and maintainability

implications based on existing persistence-

framework studies; (3) synthesis into a proposed

hybrid development–deployment workflow for

enterprise automation.

Volume 05 Issue 11-2025 4

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

Characterization of LLM-assisted Workflows

We examine the publicly available documentation

and feature descriptions of leading LLM‑based

coding assistants — specifically GitHub Copilot and

Cursor — accessed on 1 March 2025. GitHub

Copilot is known to provide contextual code

completions, boilerplate generation, and even fully

implemented functions based on natural language

prompts. Cursor emphasizes AI-assisted code

editing and codebase navigation. We treat these

tools as representative of the current generation of

LLM-assisted coding environments. We review

relevant literature on LLM engineering challenges

and opportunities as outlined in the guide LLM

Engineer’s Handbook (Iusztin & Labonne, 2024)

and the instruction-based methodology from Build

a Large Language Model (Raschka, 2024).

Analysis of Persistence-Framework

Performance and Maintainability

We survey recent empirical studies on CRUD

operations in Java-based persistence frameworks,

notably those by Ana‑Maria Bonteanu, Catalin

Tudose, and Andrei M. Anghel (Bonteanu, Tudose

& Anghel, 2023; 2024), and the comprehensive

treatment of JPA/Hibernate by Tudose (2023).

These investigations provide data on latency,

throughput, and performance variation across

frameworks and usage patterns, as well as insight

into how code structure and abstraction affect

runtime behavior. Additional insights are drawn

from refactoring best practices as elaborated in

Refactoring: Improving the Design of Existing Code

(Fowler, 2018).

Synthesis: Hybrid Workflow Proposal

Finally, we integrate findings from the above stages

with established business process and enterprise

architecture literature — drawing from BPM

surveys (Van der Aalst, 2013), ERP history and

organizational impacts (Davenport, 1998; Jacobs &

Weston, 2007), and supply chain modeling

frameworks (Min & Zhou, 2002) — to propose a

hybrid software development workflow. This

workflow aims to leverage the speed and

accessibility of LLM-assisted code generation while

preserving enterprise-grade performance,

maintainability, and scalability.

Because the study is conceptual and synthesizes

multiple disciplines, no primary data collection or

novel benchmarks were conducted. Rather, the

strength of the methodology lies in its cross-

disciplinary integration and systematic reasoning.

Results

The comparative analysis reveals a complex trade-

off space: LLM-assisted development offers

substantial benefits in developer productivity and

initial code generation speed, but also introduces

risks related to performance inefficiency,

maintainability degradation, and architecture

rigidity when used without follow-up engineering

discipline.

Accelerated Development and Lower Barrier to

Entry

LLM-based tools like Copilot and Cursor enable

even relatively inexperienced developers to

Volume 05 Issue 11-2025 5

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

generate working code rapidly. This capability

significantly reduces the time required to scaffold

services, business logic, and persistence layers. By

replacing repetitive boilerplate with generated

code, teams can shift focus toward higher-level

design considerations, business logic, and user-

facing features. This democratizes development

and enables faster prototyping — particularly

valuable in enterprise environments aiming to

deploy RPA scripts, API endpoints, or

microservices to automate business processes

(Aguirre & Rodriguez, 2017; Davenport, 1998). The

practical implication is a reduction in time-to-

market and lower initial development cost.

Risk of Performance Degradation in

Persistence Layers

However, empirical studies of CRUD performance

within JPA/Hibernate/Spring Data JPA

frameworks reveal that not all data-access code is

equal. In many cases, naive or generic use of ORM

(Object-Relational Mapping) abstractions leads to

suboptimal database queries, excessive fetching,

inefficient lazy-loading patterns, and higher

latency per transaction (Bonteanu, Tudose &

Anghel, 2024). Without careful optimization, auto-

generated persistence code tends to replicate these

inefficiencies. LLM tools, lacking deep insight into

database schema design, query optimization, or

transaction semantics, may generate valid but

inefficient code. Over many requests or in high-

throughput enterprise settings (such as supply-

chain transaction processing), this can lead to

serious performance bottlenecks, degraded

throughput, increased latency, or database locking

issues under load.

Maintenance and Technical Debt Concerns

Another issue arises in maintainability. While LLM-

generated code may "work," it may not adhere to

clean code practices, may include redundant or

convoluted logic, lack meaningful comments, or fail

to reflect project-specific architectural or design

patterns. Without subsequent refactoring, this can

accumulate into technical debt. Principles from

refactoring literature warn that code designed for

readability, maintainability, and flexibility often

diverges significantly from initial auto-generated

boilerplate (Fowler, 2018). If development teams

treat LLM output as final rather than as a draft, the

long-term maintainability and extensibility of the

system suffer — especially as business

requirements evolve or scale.

Alignment (or Misalignment) with Business

Process Automation Goals

From an enterprise architecture perspective, if

LLM-generated code supports business process

automation — for example via generating RPA-

backed services or microservices supporting

workflows — the immediate benefit is clear: faster

rollout, enabling quicker automation of tasks that

were previously manual. However, if the

underlying code suffers performance issues, the

broader business process may degrade in

reliability or speed, undermining the intended

gains. In supply chain contexts or ERP systems

supporting high transaction volumes (Min & Zhou,

2002; Jacobs & Weston, 2007), such inefficiencies

can become systemic bottlenecks. Moreover, the

lack of rigorous validation or system testing in

auto-generated code may lead to subtle errors or

Volume 05 Issue 11-2025 6

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

inconsistencies, posing risk to business operation

continuity.

Hybrid Workflow as a Mitigation Strategy

 Synthesizing these observations leads to the

proposal of a hybrid workflow for enterprise

development: developers use LLM-assisted tools to

scaffold code rapidly, including persistence layers

and business logic; but then enforce a disciplined

refactoring phase — applying design patterns,

optimizing database access, cleaning up code,

adding documentation, and introducing

performance tests. Additionally, include

performance validation (especially for database

interactions) as part of the release pipeline. In

doing so, organizations can retain the speed

benefits of LLM-assisted coding, while mitigating

risks related to performance, maintainability, and

scalability.

Discussion

 The findings underscore a critical paradox: while

LLM-based code generation democratizes

development and accelerates initial deployment,

the same abstraction that provides convenience

can hide complexity — particularly in enterprise

contexts where performance, reliability, and

maintainability are non-negotiable. This raises

several deeper implications for organizations,

software engineering practices, and future

research.

Balancing Productivity and Engineering Rigor

 One of the primary appeals of LLM-assisted

development is the potential to dramatically

reduce the time-to-market. For enterprises

adopting RPA or ERP modules to automate

business processes, this speed can be

transformative (Aguirre & Rodriguez, 2017;

Davenport, 1998). However, for long-term

sustainability, such speed must be balanced with

engineering discipline. The literature on

refactoring emphasizes that code design and

clarity are not secondary concerns but

foundational for maintainability, adaptability, and

scalability (Fowler, 2018). Rushing from auto-

generated code to production without proper

cleanup risks accruing technical debt that erodes

productivity gains over time.

Hence, organizations must treat LLM output not as

final, but as a draft — a starting point requiring

standard software engineering practice. This

means integrating refactoring, code reviews,

documentation, and performance testing into the

development lifecycle — even (or especially) when

using LLM tools.

Performance Validation as Part of Release

Pipeline

The empirical evidence from persistence-

framework performance studies (Bonteanu,

Tudose & Anghel, 2024; Tudose, 2023) suggests

that ORM-based data access can vary widely in

efficiency depending on how it is used. Automated

or generated code often makes generic

assumptions that lead to inefficient queries or

excessive resource usage. If such code is deployed

Volume 05 Issue 11-2025 7

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

unchecked, the consequences in high-throughput

or transaction-heavy systems can be severe.

Therefore, a disciplined workflow must include

automated performance validation — especially

for CRUD-heavy modules. This may involve

database load testing, profiling query performance,

monitoring latency under realistic workload, and

stress-testing under peak loads. By embedding

these tests in the release pipeline, teams can catch

suboptimal performance early and apply targeted

optimizations or refactorings.

Organizational and Architectural

Considerations

 At the organizational level, integrating LLM-

assisted development with enterprise automation

initiatives implies a shift in team roles, workflows,

and ownership. Business analysts, process

modelers, and domain experts may more actively

participate in writing natural-language prompts to

define business logic — shifting part of the

development burden from traditional developers.

This democratization can accelerate adoption of

automation and reduce reliance on specialized

developers — but only if there is a supporting

governance and validation framework.

From an architectural standpoint, enterprises must

ensure modular, decoupled design, clear

separation of concerns, and consistent use of

performance-appropriate patterns (e.g., batching,

caching, lazy loading, query optimization). LLM-

generated code should be structured in a way that

supports these patterns and does not lock the

organization into brittle, monolithic architectures.

Supply Chain, ERP, and BPM Implications

In contexts such as supply chain modeling (Min &

Zhou, 2002), enterprise resource planning (Jacobs

& Weston, 2007), and large-scale business process

management (Van der Aalst, 2013), the

introduction of LLM-assisted code generation

could lower the barrier for customizing workflows,

integrating modules, and deploying bespoke

automation. This could accelerate digital

transformation, enable rapid response to market

changes, and empower non-IT stakeholders to

contribute directly to system design.

However, as noted, performance or scalability

issues in the generated code can become

bottlenecks. In supply chain systems where

throughput, latency, and reliability are paramount,

inefficiencies could impair entire processes, lead to

delays, or cause failures. Moreover, assumptions

baked into auto-generated code (e.g., default

transaction semantics, naive data fetching) may

not reflect complex business rules or data volumes.

Without corrective engineering practices, the risk

is that such quick automation becomes fragile,

undermining long-term viability.

Risk of Organizational Over-Reliance on LLMs

 Another concern arises if organizations grow

overly dependent on LLM tools, using them for

rapid prototyping but failing to invest in

underlying architectural integrity. Over time, this

may result in codebases where original business

logic is obscured under layers of auto-generated

code, making it difficult for new developers to

Volume 05 Issue 11-2025 8

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

understand, maintain, or extend. This could reduce

organizational agility, contrary to the original goal.

Furthermore, as business requirements evolve, the

rigid structure of generated code may make it

harder to refactor or adapt to new workflows,

leading to increased maintenance costs and

potentially requiring wholesale rewrites —

negating original time savings.

Limitations of This Study

 Because this research is conceptual and

synthesizes existing literature, it lacks empirical

primary data directly measuring performance

differences between purely human-coded vs. LLM-

generated enterprise systems under production

load. The performance conclusions are therefore

inferential, drawn from related studies of ORM

frameworks rather than from controlled

experiments of LLM-generated code. Likewise,

maintainability and organizational impacts are

analyzed qualitatively rather than measured over

time. Thus, while the conceptual framework and

hybrid workflow proposal are theoretically

grounded, real-world validation is required.

Additionally, the rapidly evolving nature of LLM

tools means that future versions may improve code

quality, optimize for performance, or integrate

performance-aware features — potentially

altering the trade-off landscape described here.

Future Research Directions

 To build on this work, we recommend the

following empirical research and organizational

studies:

1. Benchmarking real-world applications:

Construct comparable enterprise applications —

one developed by traditional means, another

scaffolding via LLM-assisted tools — deploy both

under realistic workloads, and measure

performance, throughput, latency, resource usage,

and scalability.

2. Longitudinal maintainability study: Over

multiple release cycles, track code complexity, bug

frequency, onboarding time for new developers,

and refactoring needs to assess technical debt

accumulation in LLM-generated vs human-written

code.

3. User/Developer experience and governance:

Investigate how teams incorporate LLMs into

existing workflows, how prompts are authored,

how review cycles adapt, and how governance

policies evolve.

4. Integration with BPM and RPA frameworks:

Assess the viability of using LLM-generated

services as part of broader automated workflows

managed by BPM or RPA tools — evaluating

reliability, error handling, business-rule

compliance, and auditability.

Such studies would provide empirical grounding to

the conceptual arguments presented here, and help

refine best practices for enterprise adoption of

LLM-assisted development.

Conclusion

Volume 05 Issue 11-2025 9

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

 The advent of large language model–based code

generation tools marks a significant turning point

in software development. For enterprises seeking

to accelerate business process automation, ERP

integration, and supply chain management, these

tools promise substantial productivity gains,

democratization of development, and faster time-

to-market. However, exceeding these

opportunities requires discipline. Without

rigorous refactoring, performance validation, and

architectural oversight, LLM-generated code can

introduce inefficiencies, technical debt, and

fragility — detrimental to enterprise systems that

demand scalability, reliability, and maintainability.

This paper proposes a hybrid workflow that blends

the speed of LLM-assisted coding with the rigor of

traditional software engineering — incorporating

systematic refactoring, performance testing

(especially for persistence layers), and modular

design. This approach offers a viable path to

harness the benefits of AI-assisted development

without sacrificing long-term system integrity.

Ultimately, the promise of LLM tools lies not in

replacing developers, but in amplifying their

capabilities — provided they remain anchored by

sound engineering principles and enterprise

governance. As enterprises increasingly adopt

automation, AI-assisted development, and modular

architectures, such a balanced approach may

become the key enabler of agile, maintainable, and

high-performing systems.

References

1. GitHub Copilot. Available online:

https://github.com/features/copilot (accessed

on 1 March 2025)

2. Cursor, the AI Code Editor. Available online:

https://www.cursor.com/ (accessed on 1

March 2025)

3. Iusztin, P.; Labonne, M. LLM Engineer’s

Handbook: Master the Art of Engineering Large

Language Models from Concept to Production;

Packt Publishing: Birmingham, UK, 2024.

4. Raschka, S. Build a Large Language Model;

Manning: New York, NY, USA, 2024.

5. Fowler, M. Refactoring: Improving the Design of

Existing Code, 2nd ed.; Addison-Wesley

Professional: Boston, MA, USA, 2018.

6. Bonteanu, A.M.; Tudose, C.; Anghel, A.M. “Multi-

Platform Performance Analysis for CRUD

Operations in Relational Databases from Java

Programs using Spring Data JPA.” In

Proceedings of the 13th International

Symposium on Advanced Topics in Electrical

Engineering (ATEE), Bucharest, Romania, 23–

25 March 2023.

7. Bonteanu, A.M.; Tudose, C.; Anghel, A.M.

“Performance Analysis for CRUD Operations in

Relational Databases from Java Programs Using

Hibernate.” In Proceedings of the 2023 24th

International Conference on Control Systems

and Computer Science (CSCS), Bucharest,

Romania, 24 May 2023.

8. Bonteanu, A.M.; Tudose, C. “Performance

Analysis and Improvement for CRUD

Operations in Relational Databases from Java

Volume 05 Issue 11-2025 10

International Journal of Advance Scientific Research
(ISSN – 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10

OCLC – 1368736135

Programs Using JPA, Hibernate, Spring Data

JPA.” Applied Sciences, 2024, 14, 2743.

9. Tudose, C. Java Persistence with Spring Data

and Hibernate; Manning: New York, NY, USA,

2023.

10. Van der Aalst, W. M. P. “Business Process

Management: A Comprehensive Survey.” ISRN

Software Engineering, 2013, Article ID 507984.

11. Aguirre, S.; Rodriguez, A. “Automation in

Business Processes: The RPA Approach.”

Proceedings of the 2017 IEEE International

Conference on Services Computing (SCC), 170–

177, 2017.

12. Davenport, T. H. “Putting the Enterprise into the

Enterprise System.” Harvard Business Review,

76(4), 121–131, 1998.

13. Jacobs, F. R.; Weston, F. C. “Enterprise Resource

Planning (ERP) - A Brief History.” Journal of

Operations Management, 25(2), 357–363,

2007.

14. Min, H.; Zhou, G. “Supply Chain Modeling: Past,

Present and Future.” Computers & Industrial

Engineering, 43(1‑2), 231–249, 2002.

15. Chandra, R. “Automated workflow validation

for large language model pipelines.” Computer

Fraud & Security, 2025(2), 1769–1784.

16. Shahbaz, M.; Razi, M. A.; Shaikh, F. M.; Channar,

Z. A. “The Impact of Artificial Neural Networks

on the Accuracy of Demand Forecasting:

Evidence from Pakistan's Fast‑Moving

Consumer Goods Sector.” International Journal

of Emerging Markets, 14(5), 770–791, 2019.

