International Journal of Advance Scientific Research
(ISSN - 2750-1396)

VOLUME 05 ISSUE 12 Pages: 1-10

OCLC - 1368736135

2 Crossref @) 2 Google S WorldCat' [WIS ISSN-2750-1396

Research Article

ADVANGE SCIENTIFIC
RESEARCH

EE N Integrating Large Language Model-Driven Code Generation
and Business Process Automation: Impacts on Enterprise
Systems Performance and Maintainability

Journal Website:

http://sciencebring.co Submission Date: November 20, 2025, Accepted Date: December 01, 2025,
m/index.phplijasr Published Date: December 17, 2025

Copyright: Original
content from this work
may be used under the

terms of the creative Dr. Ariun Patel

zoﬂz:nncse attributes Global Institute of Transport Studies, University of Lisbon

ABSTRACT

The increasing maturity of large language model (LLM)-based code generation tools offers unprecedented
opportunities to accelerate software development, particularly in domains requiring rapid prototyping,
business process automation, and enterprise application deployment. This paper examines the theoretical
and practical implications of integrating LLM-driven coding assistants with enterprise systems
architecture, focusing on performance impacts, maintainability, and alignment with business process
management (BPM) objectives. Drawing on publicly documented features of tools such as GitHub Copilot
and Cursor, as well as established best practices in software engineering and enterprise resource planning
(ERP), we perform a conceptual comparative analysis of traditional development workflows versus LLM-
augmented workflows. We further analyze empirical findings from recent performance studies of CRUD
(Create, Read, Update, Delete) operations in Java-based persistence frameworks. The study explores how
LLM-generated boilerplate accelerates initial development yet may introduce inefficiencies or readability
challenges if not followed by disciplined refactoring (based on principles from refactoring literature). We
then connect these technical outcomes to enterprise-level business process objectives — such as supply
chain modeling, automation through robotic process automation (RPA), and ERP integration — to assess
the broader organizational impacts. We find that while LLM-driven development significantly reduces
development time and lowers the barrier to entry for non-expert developers, there exist trade-offs in
runtime performance, maintainability, and scalability — especially when database interactions are
abstracted without consideration of optimized data access patterns. To manage these trade-offs, we
propose a hybrid workflow combining LLM-assisted code generation, systematic refactoring, and

Volume 05 Issue 11-2025 1

International Journal of Advance Scientific Research
(ISSN - 2750-1396)

VOLUME 05 ISSUE 12 Pages: 1-10

OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

performance validation as part of the release pipeline. We conclude with a roadmap for future empirical

evaluation and integration strategies to maximize business value while minimizing technical debt.

KEYWOoRDS

Large language models, Code generation, Business process automation, Enterprise systems, Software
maintainability, Performance analysis, CRUD operations

INTRODUCTION

In recent years, software development has
undergone a rapid transformation, driven by
advances in artificial intelligence and machine
learning, particularly in the domain of large
language models (LLMs). LLM-based coding
assistants such as GitHub Copilot and Cursor have
emerged as powerful tools that can generate code
snippets, boilerplate, and even complex functions
based on natural language prompts (GitHub
Copilot, 2025; Cursor, 2025). Concurrently,
enterprises are under growing pressure to
accelerate business process automation, adopt ERP
systems, and streamline supply chain operations to
remain competitive (Davenport, 1998; Jacobs &
Weston, 2007; Min & Zhou, 2002).

Traditional software development pipelines for
enterprise systems are often lengthy, labor-
intensive, and error-prone. Developers must write,
test, maintain, and refactor large codebases—
particularly the layers that interface with
databases and enterprise
modules. frameworks like JPA,
Hibernate, or Spring Data JPA are widely used to
simplify database interactions, yet as recent

resource planning
Persistence

studies show, their performance characteristics

vary significantly depending on usage patterns
(Bonteanu, Tudose & Anghel, 2024).

LLM-driven code generation promises to reduce
boilerplate, democratize coding, and enable faster
deployment of business logic. At the same time,
organizations are increasingly automating
workflows through robotic process automation
(RPA) and structured process
management (BPM) strategies (Aguirre &
Rodriguez, 2017; Van der Aalst, 2013). The
convergence of LLM-based development tools with
BPM and ERP introduces the possibility of a
paradigm shift: from hand-coded enterprise
systems to "automatically generated and managed"

business

business logic. However, this convergence also
questions: Do LLM-generated
systems adequately? Are they
maintainable over time? Do they align with best
practices in software design and enterprise
architecture? How do they impact business-
process efficiency?

raises critical

perform

This paper aims to provide a comprehensive
analysis of these questions. By synthesizing
insights from LLM engineering literature (lusztin &
Labonne, 2024; Raschka, 2024), software
engineering best practices (Fowler, 2018),
empirical performance studies of persistence
frameworks (Bonteanu, Tudose & Anghel, 2023;

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

2024; Tudose, 2023), and BPM/ERP research
(Davenport, 1998; Jacobs & Weston, 2007; Van der
Aalst, 2013; Min & Zhou, 2002), we examine the
potential and pitfalls of integrating LLM-driven
development into enterprise-scale business
process automation. In so doing, we identify a
critical gap: the lack of systematic, performance-
aware workflows that bridge Al-assisted coding
and enterprise operations. We propose a hybrid
development workflow that integrates LLM
assistance, rigorous refactoring, and performance
validation — aiming to maximize business value
while preserving maintainability and scalability.

Literature Gap and Problem Statement

Existing literature on LLM-assisted development
primarily focuses on productivity gains, code
correctness, and human-AlI interaction in coding
tasks (Iusztin & Labonne, 2024; Raschka, 2024).
Meanwhile, studies of
enterprise persistence frameworks examine CRUD
operations and database efficiency (Bonteanu,
Tudose & Anghel, 2023; 2024; Tudose, 2023). On
the BPM side, research explores automation at the
process and organizational level — through ERP
adoption, RPA, and supply chain modeling (Aguirre
& Rodriguez, 2017; Davenport, 1998; Jacobs &
Weston, 2007; Min & Zhou, 2002; Van der Aalst,
2013). However, there is little to no work that ties
together LLM-driven development, persistence
performance, and business process automation in
a unified framework. In particular, how do code-

performance analysis

generation tools influence the performance and
maintainability of enterprise that
underpin BPM workflows?

systems

The problem, then, is multidimensional: while LLM
tools dramatically speed wup development,
enterprises cannot afford to sacrifice performance,
scalability, or maintainability — especially in
throughput-sensitive environments (e.g., high-
frequency supply chain operations, large-scale ERP
data access). Without integration
strategies, LLM-generated solutions may create

rigorous

technical debt, performance bottlenecks, or brittle
architecture that fails under enterprise load. There
is a pressing need for a structured methodology to
combine the strengths of LLM-assisted
development with the rigors of
engineering and enterprise performance demands.

software

This paper seeks to fill that gap by proposing such
a methodology, drawing on cross-disciplinary
insights to outline best practices, potential pitfalls,
and a roadmap for real-world adoption.

Methodology
Given the emergent nature of LLM-driven
enterprise development and the scarcity of
publicly available empirical data, this study adopts
a conceptual comparative
methodology, anchored in a review of documented
tool capabilities, empirical performance studies,
and established enterprise research. The research

and research

proceeds in three stages: (1) characterization of
LLM-assisted coding tools and workflows; (2)
analysis of performance and maintainability
implications existing persistence-

framework studies; (3) synthesis into a proposed

based on

hybrid development-deployment workflow for
enterprise automation.

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

Characterization of LLM-assisted Workflows

We examine the publicly available documentation
and feature descriptions of leading LLM-based
coding assistants — specifically GitHub Copilot and
Cursor — accessed on 1 March 2025. GitHub
Copilot is known to provide contextual code
completions, boilerplate generation, and even fully
implemented functions based on natural language
prompts. Cursor emphasizes Al-assisted code
editing and codebase navigation. We treat these
tools as representative of the current generation of
LLM-assisted coding environments. We review
relevant literature on LLM engineering challenges
and opportunities as outlined in the guide LLM
Engineer’s Handbook (Iusztin & Labonne, 2024)
and the instruction-based methodology from Build
a Large Language Model (Raschka, 2024).

Analysis of Persistence-Framework
Performance and Maintainability

We survey recent empirical studies on CRUD
operations in Java-based persistence frameworks,
notably those by Ana-Maria Bonteanu, Catalin
Tudose, and Andrei M. Anghel (Bonteanu, Tudose
& Anghel, 2023; 2024), and the comprehensive
treatment of JPA/Hibernate by Tudose (2023).
These investigations provide data on latency,
throughput, and performance variation across
frameworks and usage patterns, as well as insight
into how code structure and abstraction affect
runtime behavior. Additional insights are drawn
from refactoring best practices as elaborated in
Refactoring: Improving the Design of Existing Code
(Fowler, 2018).

Synthesis: Hybrid Workflow Proposal

Finally, we integrate findings from the above stages
with established business process and enterprise
architecture literature — drawing from BPM
surveys (Van der Aalst, 2013), ERP history and
organizational impacts (Davenport, 1998; Jacobs &
Weston, 2007), and supply chain modeling
frameworks (Min & Zhou, 2002) — to propose a
hybrid software development workflow. This
workflow aims to leverage the speed and
accessibility of LLM-assisted code generation while
preserving enterprise-grade performance,
maintainability, and scalability.

Because the study is conceptual and synthesizes
multiple disciplines, no primary data collection or
novel benchmarks were conducted. Rather, the
strength of the methodology lies in its cross-
disciplinary integration and systematic reasoning.

Results

The comparative analysis reveals a complex trade-
off space: LLM-assisted development offers
substantial benefits in developer productivity and
initial code generation speed, but also introduces
risks related to
maintainability degradation,
rigidity when used without follow-up engineering
discipline.

performance inefficiency,

and architecture

Accelerated Development and Lower Barrier to
Entry

LLM-based tools like Copilot and Cursor enable
even relatively inexperienced developers to

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

generate working code rapidly. This capability
significantly reduces the time required to scaffold
services, business logic, and persistence layers. By
replacing repetitive boilerplate with generated
code, teams can shift focus toward higher-level
design considerations, business logic, and user-
facing features. This democratizes development
and enables faster prototyping — particularly
valuable in enterprise environments aiming to
deploy RPA scripts, APl endpoints, or
microservices to automate business processes
(Aguirre & Rodriguez, 2017; Davenport, 1998). The
practical implication is a reduction in time-to-
market and lower initial development cost.

Risk of Performance
Persistence Layers

Degradation in

However, empirical studies of CRUD performance
JPA/Hibernate/Spring Data JPA
frameworks reveal that not all data-access code is
equal. In many cases, naive or generic use of ORM
(Object-Relational Mapping) abstractions leads to
suboptimal database queries, excessive fetching,
inefficient lazy-loading patterns, and higher
latency per transaction (Bonteanu, Tudose &
Anghel, 2024). Without careful optimization, auto-
generated persistence code tends to replicate these
inefficiencies. LLM tools, lacking deep insight into
database schema design, query optimization, or
transaction semantics, may generate valid but
inefficient code. Over many requests or in high-
throughput enterprise settings (such as supply-
chain transaction processing), this can lead to
performance bottlenecks, degraded
throughput, increased latency, or database locking

within

serious

issues under load.

Maintenance and Technical Debt Concerns

Another issue arises in maintainability. While LLM-
generated code may "work," it may not adhere to
clean code practices, may include redundant or
convoluted logic, lack meaningful comments, or fail
to reflect project-specific architectural or design
patterns. Without subsequent refactoring, this can
accumulate into technical debt. Principles from
refactoring literature warn that code designed for
readability, maintainability, and flexibility often
diverges significantly from initial auto-generated
boilerplate (Fowler, 2018). If development teams
treat LLM output as final rather than as a draft, the
long-term maintainability and extensibility of the
suffer — especially as business
requirements evolve or scale.

system

Alignment (or Misalignment) with Business
Process Automation Goals

From an enterprise architecture perspective, if
LLM-generated code supports business process
automation — for example via generating RPA-
backed services or microservices supporting
workflows — the immediate benefit is clear: faster
rollout, enabling quicker automation of tasks that
previously manual. However, if the
underlying code suffers performance issues, the
broader process
reliability or speed, undermining the intended
gains. In supply chain contexts or ERP systems
supporting high transaction volumes (Min & Zhou,
2002; Jacobs & Weston, 2007), such inefficiencies
can become systemic bottlenecks. Moreover, the
lack of rigorous validation or system testing in
auto-generated code may lead to subtle errors or

were

business may degrade in

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research
(ISSN - 2750-1396)

VOLUME 05 ISSUE 12 Pages: 1-10

OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

inconsistencies, posing risk to business operation
continuity.

Hybrid Workflow as a Mitigation Strategy

Synthesizing these observations leads to the
proposal of a hybrid workflow for enterprise
development: developers use LLM-assisted tools to
scaffold code rapidly, including persistence layers
and business logic; but then enforce a disciplined
refactoring phase — applying design patterns,
optimizing database access, cleaning up code,
adding documentation, and introducing
performance tests. Additionally, include
performance validation (especially for database
interactions) as part of the release pipeline. In
doing so, organizations can retain the speed
benefits of LLM-assisted coding, while mitigating
risks related to performance, maintainability, and
scalability.

Discussion

The findings underscore a critical paradox: while
LLM-based generation
development and accelerates initial deployment,
the same abstraction that provides convenience

code democratizes

can hide complexity — particularly in enterprise
contexts where performance, reliability, and
maintainability are non-negotiable. This raises
several deeper implications for organizations,
engineering practices,

software and future

research.

Balancing Productivity and Engineering Rigor

One of the primary appeals of LLM-assisted
development is the potential to dramatically
reduce the enterprises
adopting RPA or ERP modules to automate

time-to-market. For

business processes, this speed can be
transformative (Aguirre & Rodriguez, 2017;
Davenport, 1998). However, for long-term

sustainability, such speed must be balanced with
engineering discipline. The literature on
refactoring emphasizes that code design and
clarity are not secondary
foundational for maintainability, adaptability, and
scalability (Fowler, 2018). Rushing from auto-
generated code to production without proper
cleanup risks accruing technical debt that erodes
productivity gains over time.

concerns but

Hence, organizations must treat LLM output not as
final, but as a draft — a starting point requiring
standard software engineering practice. This
means integrating refactoring, code reviews,
documentation, and performance testing into the
development lifecycle — even (or especially) when

using LLM tools.

Performance Validation as Part of Release
Pipeline

The empirical evidence from persistence-
framework performance studies (Bonteanu,
Tudose & Anghel, 2024; Tudose, 2023) suggests
that ORM-based data access can vary widely in
efficiency depending on how it is used. Automated
or generated code often makes generic
assumptions that lead to inefficient queries or

excessive resource usage. If such code is deployed

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

unchecked, the consequences in high-throughput
or transaction-heavy systems can be severe.

Therefore, a disciplined workflow must include
automated performance validation — especially
for CRUD-heavy modules. This may involve
database load testing, profiling query performance,
monitoring latency under realistic workload, and
stress-testing under peak loads. By embedding
these tests in the release pipeline, teams can catch
suboptimal performance early and apply targeted
optimizations or refactorings.

Organizational and Architectural

Considerations

At the organizational level, integrating LLM-
assisted development with enterprise automation
initiatives implies a shift in team roles, workflows,
and ownership. Business analysts, process
modelers, and domain experts may more actively
participate in writing natural-language prompts to
define business logic — shifting part of the
development burden from traditional developers.
This democratization can accelerate adoption of
automation and reduce reliance on specialized
developers — but only if there is a supporting
governance and validation framework.

From an architectural standpoint, enterprises must
decoupled design,
separation of concerns, and consistent use of
performance-appropriate patterns (e.g., batching,
caching, lazy loading, query optimization). LLM-
generated code should be structured in a way that
supports these patterns and does not lock the
organization into brittle, monolithic architectures.

ensure modular, clear

Supply Chain, ERP, and BPM Implications

In contexts such as supply chain modeling (Min &
Zhou, 2002), enterprise resource planning (Jacobs
& Weston, 2007), and large-scale business process
management (Van der Aalst, 2013), the
introduction of LLM-assisted code generation
could lower the barrier for customizing workflows,
integrating modules, and deploying bespoke
automation. This could accelerate digital
transformation, enable rapid response to market
changes, and empower non-IT stakeholders to
contribute directly to system design.

However, as noted, performance or scalability
issues in the generated code can become
bottlenecks.
throughput, latency, and reliability are paramount,
inefficiencies could impair entire processes, lead to
delays, or cause failures. Moreover, assumptions
baked into auto-generated code (e.g., default
transaction semantics, naive data fetching) may
not reflect complex business rules or data volumes.
Without corrective engineering practices, the risk
is that such quick automation becomes fragile,
undermining long-term viability.

In supply chain systems where

Risk of Organizational Over-Reliance on LLMs

Another concern arises if organizations grow
overly dependent on LLM tools, using them for
rapid prototyping but failing to
underlying architectural integrity. Over time, this
may result in codebases where original business
logic is obscured under layers of auto-generated

invest in

code, making it difficult for new developers to

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

understand, maintain, or extend. This could reduce
organizational agility, contrary to the original goal.

Furthermore, as business requirements evolve, the
rigid structure of generated code may make it
harder to refactor or adapt to new workflows,
leading to increased maintenance costs and

potentially requiring wholesale rewrites —
negating original time savings.

Limitations of This Study

Because this research is conceptual and

synthesizes existing literature, it lacks empirical
primary data directly measuring performance
differences between purely human-coded vs. LLM-
generated enterprise systems under production
load. The performance conclusions are therefore
inferential, drawn from related studies of ORM
frameworks rather than controlled
experiments of LLM-generated code. Likewise,
maintainability and organizational impacts are
analyzed qualitatively rather than measured over
time. Thus, while the conceptual framework and
hybrid workflow proposal are theoretically
grounded, real-world validation is required.

from

Additionally, the rapidly evolving nature of LLM
tools means that future versions may improve code
quality, optimize for performance, or integrate
performance-aware potentially
altering the trade-off landscape described here.

features —

Future Research Directions

To build on this work, we recommend the
following empirical research and organizational
studies:

real-world

applications:
Construct comparable enterprise applications —
one developed by traditional means, another
scaffolding via LLM-assisted tools — deploy both

1. Benchmarking

under realistic workloads, and
performance, throughput, latency, resource usage,

and scalability.

measure

2. Longitudinal maintainability study: Over
multiple release cycles, track code complexity, bug
frequency, onboarding time for new developers,
and refactoring needs to assess technical debt
accumulation in LLM-generated vs human-written
code.

3. User/Developer experience and governance:
Investigate how teams incorporate LLMs into
existing workflows, how prompts are authored,
how review cycles adapt, and how governance
policies evolve.

4. Integration with BPM and RPA frameworks:
Assess the viability of using LLM-generated
services as part of broader automated workflows
managed by BPM or RPA tools — evaluating
reliability, handling, business-rule
compliance, and auditability.

error

Such studies would provide empirical grounding to
the conceptual arguments presented here, and help
refine best practices for enterprise adoption of
LLM-assisted development.

Conclusion

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research

(ISSN - 2750-1396)
VOLUME 05 ISSUE 12 Pages: 1-10
OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag

The advent of large language model-based code
generation tools marks a significant turning point
in software development. For enterprises seeking
to accelerate business process automation, ERP
integration, and supply chain management, these
tools promise
democratization of development, and faster time-
to-market. However, exceeding these
opportunities requires discipline. Without
rigorous refactoring, performance validation, and
architectural oversight, LLM-generated code can
introduce inefficiencies, technical debt, and
fragility — detrimental to enterprise systems that
demand scalability, reliability, and maintainability.

substantial productivity gains,

This paper proposes a hybrid workflow that blends
the speed of LLM-assisted coding with the rigor of
traditional software engineering — incorporating
systematic refactoring, testing
(especially for persistence layers), and modular
design. This approach offers a viable path to
harness the benefits of Al-assisted development

performance

without sacrificing long-term system integrity.

Ultimately, the promise of LLM tools lies not in
replacing developers, but in amplifying their
capabilities — provided they remain anchored by
sound engineering principles and enterprise
governance. As enterprises increasingly adopt
automation, Al-assisted development, and modular
architectures, such a balanced approach may
become the key enabler of agile, maintainable, and
high-performing systems.

References

1. GitHub Copilot. Available online:
https://github.com/features/copilot (accessed
on 1 March 2025)

2. Cursor, the Al Code Editor. Available online:
https://www.cursor.com/ (accessed on 1
March 2025)

3. lusztin, P; Labonne, M. LLM Engineer’s
Handbook: Master the Art of Engineering Large
Language Models from Concept to Production;
Packt Publishing: Birmingham, UK, 2024.

4. Raschka, S. Build a Large Language Model;
Manning: New York, NY, USA, 2024.

5. Fowler, M. Refactoring: Improving the Design of
Existing Code, 2nd ed.; Addison-Wesley
Professional: Boston, MA, USA, 2018.

6. Bonteanu, A.M.; Tudose, C.; Anghel, A.M. “Multi-
Platform Performance Analysis for CRUD
Operations in Relational Databases from Java

JPA” In

International

Programs using Spring Data
Proceedings of the 13th
Symposium on Advanced Topics in Electrical
Engineering (ATEE), Bucharest, Romania, 23-
25 March 2023.

7. Bonteanu, A.M.; Tudose, C. Anghel, AM.
“Performance Analysis for CRUD Operations in
Relational Databases from Java Programs Using
Hibernate.” In Proceedings of the 2023 24th
International Conference on Control Systems
and Computer Science (CSCS), Bucharest,
Romania, 24 May 2023.

8. Bonteanu, A.M.; Tudose, C. “Performance
Analysis and Improvement for CRUD
Operations in Relational Databases from Java

Volume 05 Issue 11-2025

International Journal of Advance Scientific Research
(ISSN - 2750-1396)

VOLUME 05 ISSUE 12 Pages: 1-10

OCLC - 1368736135

ba Crossref d) B2d Google S worldCat' J RNNNEag ISSN-2750-1396

13.Jacobs, F. R.; Weston, F. C. “Enterprise Resource
Planning (ERP) - A Brief History.” Journal of
Operations Management, 25(2), 357-363,
2007.

14.Min, H.; Zhou, G. “Supply Chain Modeling: Past,
Present and Future.” Computers & Industrial

Programs Using JPA, Hibernate, Spring Data
JPA.” Applied Sciences, 2024, 14, 2743.

9. Tudose, C. Java Persistence with Spring Data
and Hibernate; Manning: New York, NY, USA,
2023.

10.Van der Aalst, W. M. P. “Business Process

Management: A Comprehensive Survey.” ISRN
Software Engineering, 2013, Article ID 507984.
11.Aguirre, S.; Rodriguez, A. “Automation in

Engineering, 43(1-2), 231-249, 2002.
15.Chandra, R. “Automated workflow validation
for large language model pipelines.” Computer

Fraud & Security, 2025(2), 1769-1784.

16.Shahbaz, M.; Razi, M. A.; Shaikh, F. M.; Channar,
Z. A. “The Impact of Artificial Neural Networks
on the Accuracy of Demand Forecasting:
Evidence from Pakistan's Fast-Moving
Consumer Goods Sector.” International Journal
of Emerging Markets, 14(5), 770-791, 2019.

Business Processes: The RPA Approach.”
Proceedings of the 2017 IEEE International
Conference on Services Computing (SCC), 170-
177,2017.

12.Davenport, T. H. “Putting the Enterprise into the
Enterprise System.” Harvard Business Review,
76(4),121-131, 1998.

Volume 05 Issue 11-2025 10

