

Research Article

Resilient Lockstep and Redundant Multicore Processor Architectures for Soft Error Mitigation in Safety-Critical Embedded Systems

Journal [Website:](http://sciencebring.co/m/index.php/ijasr)
<http://sciencebring.co/m/index.php/ijasr>

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

Submission Date: February 01, 2025, **Accepted Date:** February 15, 2025,
Published Date: February 28, 2025

Dr. Michael A. Thornton
Department of Electrical and Computer Engineering,
Westbridge University, United Kingdom

ABSTRACT

The continuous scaling of semiconductor technologies has significantly increased the susceptibility of modern processors to transient faults, particularly soft errors induced by radiation effects such as single-event upsets and multiple-bit upsets. This challenge is especially critical in safety-critical embedded systems deployed in automotive, aerospace, industrial control, and high-reliability computing environments, where incorrect computation can lead to catastrophic consequences. Lockstep-based redundancy, dual-core and triple-core architectures, dynamic and heterogeneous replication techniques, and reconfigurable fault recovery mechanisms have therefore emerged as fundamental design strategies to ensure dependable operation. This article presents an extensive and original research-oriented analysis of lockstep and redundant multicore processor architectures for soft error mitigation, grounded strictly in the provided body of literature. Drawing from experimental heavy-ion irradiation studies, industrial processor implementations, FPGA-based softcore designs, and architectural modeling of fault trends, the paper elaborates on the theoretical foundations of fault tolerance, the evolution of lockstep techniques, and the practical design trade-offs between performance, area, power, and reliability. Methodological aspects are explored in detail, including architectural replication, error detection and comparison mechanisms, context reloading, dynamic lockstep activation, heterogeneous core approaches, and system-level monitoring using trace and debug infrastructures. The results are discussed in a descriptive and interpretive manner, emphasizing resilience improvements, detection coverage, and recovery behavior under realistic fault conditions. The discussion further addresses limitations, scalability concerns, and future research directions, particularly in the context of emerging automotive zonal controllers and highly integrated system-on-chip platforms. By synthesizing theoretical insights with practical design evidence,

this article aims to serve as a comprehensive academic reference on lockstep and redundant multicore fault-tolerant processor architectures.

KEYWORDS

Soft errors, lockstep architecture, fault tolerance, safety-critical systems, multicore processors, radiation effects

INTRODUCTION

The reliability of digital computing systems has historically been influenced by manufacturing quality, environmental conditions, and operational stress. In earlier generations of semiconductor technology, faults were predominantly permanent and could often be mitigated through conservative design margins and redundancy at the component level. However, as transistor dimensions have continued to shrink and supply voltages have been aggressively reduced, modern processors have become increasingly vulnerable to transient faults, commonly referred to as soft errors. These errors do not cause permanent damage to hardware but can corrupt data or control flow, leading to incorrect program execution. The phenomenon has been extensively associated with radiation-induced events such as heavy ions, alpha particles, and cosmic neutrons, which can deposit sufficient charge in sensitive nodes to flip logic states (Baumann, 2005; Shivakumar et al., 2002).

In safety-critical embedded systems, such as those used in automotive advanced driver assistance systems, aerospace flight control, industrial automation, and medical devices, even a single undetected soft error can compromise functional safety and violate stringent regulatory standards. Standards such as ISO 26262 in automotive

electronics explicitly require systematic mechanisms for fault detection, isolation, and recovery to achieve defined automotive safety integrity levels. As a result, fault-tolerant processor architectures have become a central research and industrial development topic.

Among the various fault tolerance techniques proposed over the past decades, lockstep execution stands out as a widely adopted architectural paradigm. In its simplest form, lockstep involves executing the same instruction stream simultaneously on two or more processor cores and continuously comparing their outputs. Any discrepancy is interpreted as an indication of a fault, enabling immediate detection and subsequent recovery actions. Dual-core lockstep and triple-core lockstep architectures have been implemented in both commercial processors and research prototypes, demonstrating high fault coverage with relatively deterministic behavior (de Oliveira et al., 2018; Iturbe et al., 2016).

Despite its conceptual simplicity, lockstep execution introduces significant design challenges. These include synchronization overhead, increased area and power consumption, vulnerability to common-mode failures, and limitations in scalability. To address these issues, researchers have explored dynamic lockstep activation, heterogeneous core execution, fast

context reloading, reconfiguration-based recovery, and hybrid hardware-software approaches. FPGA-based softcore processors have also played a critical role as experimental platforms, enabling rapid prototyping and evaluation of fault-tolerant mechanisms under controlled fault injection and radiation testing environments (Gomez-Cornejo et al., 2013; Hanafi et al., 2015).

The literature further indicates that fault tolerance cannot be treated as an isolated processor-level feature. Instead, it must be integrated with system-level monitoring, debug, and trace infrastructures, as well as memory protection and cache recovery mechanisms. Modern system-on-chip platforms, such as those based on ARM architectures and Xilinx Zynq devices, provide rich support for such integration through standardized components like CoreSight and soft error mitigation controllers (ARM, 2009; Xilinx, 2014; Xilinx, 2016).

While numerous studies have addressed specific aspects of lockstep and redundant execution, there remains a gap in comprehensive, theoretically grounded analyses that synthesize these approaches into a unified architectural perspective. Many works focus on implementation details or isolated experiments without fully elaborating on the broader implications for system design, scalability, and long-term technology trends. This article addresses this gap by providing an extensive and deeply elaborated analysis of lockstep and redundant multicore processor architectures for soft error mitigation, strictly grounded in the provided references and without reliance on external or speculative sources.

The methodological approach adopted in this work is analytical and architectural in nature, focusing on the systematic examination of fault-tolerant processor techniques as presented in the referenced literature. Rather than proposing a new hardware implementation or experimental setup, the methodology consists of a detailed synthesis and reinterpretation of established designs, experimental evaluations, and architectural models to derive deeper theoretical insights.

The first methodological dimension involves the architectural characterization of lockstep execution. Dual-core lockstep architectures, such as those implemented using ARM Cortex-A9 processors, are analyzed by examining how identical cores are synchronized at the instruction and cycle level, how outputs are compared, and how discrepancies are handled. Heavy-ion irradiation experiments provide empirical evidence of resilience improvements and fault detection coverage, allowing a qualitative assessment of robustness under extreme conditions (de Oliveira et al., 2018).

The second dimension addresses triple-core lockstep architectures, which extend redundancy by introducing majority voting mechanisms. The methodology examines how triple-core lockstep mitigates single-fault scenarios more effectively than dual-core designs and how it trades increased hardware cost for higher fault masking capability (Iturbe et al., 2016). Particular attention is given to safety-critical certification contexts, where deterministic fault response is as important as raw detection coverage.

A third methodological strand focuses on dynamic and reconfigurable approaches. Fast context

METHODOLOGY

reloading lockstep techniques and dynamically reconfigurable softcore processors are examined to understand how system state can be rapidly restored after fault detection, minimizing downtime and maintaining real-time constraints (Gomez-Cornejo et al., 2013; Pham et al., 2013). FPGA-based implementations provide a unique methodological advantage, as they allow the evaluation of partial reconfiguration and recovery mechanisms that would be difficult to implement in fixed silicon.

The methodology further incorporates heterogeneous and thread-level redundancy techniques, such as parallel error detection using heterogeneous cores and simultaneous multithreading-based fault detection. These approaches are analyzed to understand how diversity can reduce common-mode failure risks while preserving performance benefits (Reinhardt and Mukherjee, 2000; Ainsworth and Jones, 2018; Serrano-Cases et al., 2019).

Finally, system-level support mechanisms are considered as part of the methodology. Debug and trace infrastructures, such as ARM CoreSight, and dedicated soft error mitigation controllers are examined for their role in monitoring execution, capturing fault events, and orchestrating recovery actions (ARM, 2009; ARM, 2011; Xilinx, 2014). This holistic methodological perspective ensures that fault tolerance is evaluated not only at the processor core level but also within the broader system context.

Results

The descriptive analysis of results derived from the referenced works consistently demonstrates that

lockstep and redundant execution architectures significantly enhance the resilience of embedded processors against soft errors. Dual-core lockstep implementations show near-complete detection of transient faults affecting core logic, particularly when comparison points are carefully chosen to capture both data and control flow deviations (de Oliveira et al., 2018). Heavy-ion irradiation experiments reveal that while soft errors continue to occur at the physical level, their propagation to system outputs is effectively prevented through immediate detection.

Triple-core lockstep architectures further improve resilience by enabling fault masking rather than mere detection. Majority voting ensures correct output as long as no more than one core is affected by a fault at any given time. This capability is particularly valuable in ultra-reliable and safety-critical applications, where uninterrupted operation is required even in the presence of faults (Iturbe et al., 2016). The results indicate that triple-core designs offer higher availability at the cost of increased area and power consumption.

Dynamic lockstep and reconfigurable approaches yield results that highlight the importance of recovery latency. Fast context reloading techniques demonstrate that system state can be restored rapidly after fault detection, reducing the impact on real-time performance. FPGA-based experiments show that partial reconfiguration enables localized recovery without halting the entire system, thereby improving fault containment (Gomez-Cornejo et al., 2013; Hanafi et al., 2015; Pham et al., 2013).

Heterogeneous and thread-level redundancy techniques provide complementary results. By

executing equivalent workloads on architecturally diverse cores or threads, these approaches reduce susceptibility to design bugs and correlated faults. While detection latency may be higher compared to cycle-accurate lockstep, the results suggest improved robustness against common-mode failures (Ainsworth and Jones, 2018; Reinhardt and Mukherjee, 2000).

System-level monitoring and mitigation components further enhance these results by providing visibility into execution behavior and centralized fault management. Trace-based monitoring allows post-fault analysis and supports certification efforts by providing evidence of correct fault handling (ARM, 2011). Dedicated mitigation controllers simplify integration and standardize recovery mechanisms across platforms (Xilinx, 2014).

DISCUSSION

The results discussed above underscore the effectiveness of lockstep and redundant execution as foundational strategies for soft error mitigation in safety-critical systems. However, they also reveal inherent trade-offs that must be carefully balanced in practical designs. Dual-core lockstep offers a favorable compromise between fault coverage and resource overhead, making it attractive for automotive and industrial applications with moderate reliability requirements. Triple-core lockstep, while more robust, may be justified only in scenarios where maximum availability is mandatory.

Dynamic and reconfigurable approaches address some limitations of static lockstep by improving recovery flexibility and reducing downtime.

Nevertheless, they introduce additional complexity in design verification and certification, particularly when partial reconfiguration is involved. Heterogeneous and thread-level redundancy further expand the design space by introducing diversity, but they challenge deterministic timing analysis.

Technology scaling trends suggest that soft error rates in combinational logic and memory will continue to evolve, reinforcing the need for adaptable and scalable fault tolerance mechanisms (Shivakumar et al., 2002). Future systems are likely to combine multiple techniques, integrating lockstep execution with memory protection, cache recovery, and system-level supervision.

CONCLUSION

This article has presented an extensive and theoretically grounded analysis of lockstep and redundant multicore processor architectures for soft error mitigation in safety-critical embedded systems. By synthesizing empirical evidence, architectural designs, and system-level support mechanisms from the provided literature, the work demonstrates that lockstep execution remains a central and effective strategy for achieving high reliability in modern processors. At the same time, it highlights the necessity of carefully balancing redundancy, performance, and complexity, as well as the importance of integrating processor-level techniques with system-level monitoring and recovery infrastructures. The insights presented herein provide a comprehensive academic foundation for future research and development in fault-tolerant processor design.

REFERENCES

1. Ainsworth, S., & Jones, T. M. (2018). Parallel error detection using heterogeneous cores. Proceedings of the Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
2. ARM Ltd. (2009). CoreSight components: Technical reference manual.
3. ARM Ltd. (2011). CoreSight program flow trace: Architecture specification.
4. de Oliveira, A. B., Rodrigues, G. S., Kastensmidt, F. L., Added, N., Macchione, E. L. A., Aguiar, V. A. P., Medina, N. H., & Silveira, M. A. G. (2018). Lockstep dual-core ARM A9: Implementation and resilience analysis under heavy ion-induced soft errors. *IEEE Transactions on Nuclear Science*, 65(8).
5. Gomez-Cornejo, J., Zuloaga, A., Kretzschmar, U., Bidarte, U., & Jimenez, J. (2013). Fast context reloading lockstep approach for SEUs mitigation in a FPGA soft core processor. Proceedings of the IEEE Industrial Electronics Society Conference.
6. Hanafi, A., Karim, M., & Hammami, A. E. (2015). Dual-lockstep MicroBlaze-based embedded system for error detection and recovery with reconfiguration technique. Proceedings of the World Conference on Complex Systems.
7. Iturbe, X., Venu, B., Ozer, E., & Das, S. (2016). A triple core lock-step ARM Cortex-R5 processor for safety-critical and ultra-reliable applications. Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks Workshop.
8. Karim, A. S. A. (2023). Fault-tolerant dual-core lockstep architecture for automotive zonal controllers using NXP S32G processors. *International Journal of Intelligent Systems and Applications in Engineering*, 11(11s), 877–885.
9. Pham, H., Pillement, S., & Piestrak, S. J. (2013). Low-overhead fault-tolerance technique for a dynamically reconfigurable softcore processor. *IEEE Transactions on Computers*, 62(6), 1179–1192.
10. Reinhardt, S. K., & Mukherjee, S. S. (2000). Transient fault detection via simultaneous multithreading. Proceedings of the International Symposium on Computer Architecture.
11. Serrano-Cases, A., Restrepo-Calle, F., Cuenca-Asensi, S., & Martínez-Álvarez, A. (2019). Softerror mitigation for multi-core processors based on thread replication. Proceedings of the IEEE Latin American Test Symposium.
12. Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D., & Alvisi, L. (2002). Modeling the effect of technology trends on the soft error rate of combinational logic. Proceedings of the International Conference on Dependable Systems and Networks.
13. Xilinx Inc. (2014). Soft error mitigation controller v4.1: Product guide.
14. Xilinx Inc. (2016). Zynq-7000 all programmable SoC: Technical reference manual.