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ABSTRACT 

This article discusses a method for calculating functions belonging to the class of functions that are not 

intgerable in a standard way using the Feynman method, which allows one to obtain an exact analytical 

solution. This article shows a method for calculating some rather complex integrals that cannot be 

integrated in the standard way. 
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respect to a parameter.     

INTRODUCTION

Some integrals, which belong to the class of 

functions that are not intgerable by standard 

methods, can be calculated using a method 

created by Nobel Prize winner (1965) Richard 

Feynman. Richard developed an integration 

method called the Feynman trick. He has achieved 

achievements in the field of theoretical physics, 

the development of a method of integration along 

trajectories from quantum mechanics, and the 

reformation of teaching methods in higher 

educational institutions. 
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Integration is associated with important methods 

of analysis and study of numerical functions – 

averages, limits, infinitesimals, differentials, 

derivatives, and so on, and therefore without 

understanding and studying these concepts, the 

study of functions is impossible. To find the value 

of the integral, scientists such as Richard 

Feynman found unconventional methods. 

Integrating functions is a mathematical art. It is 

interesting to calculate them, especially when 

non-standard methods are used in the solution. 

 

Consider the integral 

( ) ( )
( )

( )

=

pb

pa

dxpxfpI ,    where  p – is the integral parameter, x – is the integration variable. 

( ) ( )


=

b

a

dxpxf
p

pI ,  

Consider the improper integral (Dirichlet integral) 




−

dx
x

axsin
    (1) 0a  

The integrand is even and therefore  




−

=
0

sin
2

sin
dx

x

ax
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x

ax
     (2) 

To calculate the right side of equality (2), we find the function 

x

1
 in the form   



− =
0

1

x
dte xt

 

where constaa = ,0 . Then form equality (2) we obtain  
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To calculate 


−

0

,sin dxaxe tx we use Euler’s formula 
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Now let’s calculate the same integral (1) using Feynman’s method. Thus, we will demonstrate the power of 

Feynman’s method. 




0

sin
dx

x

ax
 

 Solution. Let function ( )pI  be defined by the formula 

 ( ) 0,
sin

= 


−

− pdx
x

ax
epI px , where  0a  

Differentiating with respect to the parameter p , where x  is a fictitious integration variable, we obtain 

 
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− −=−=

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By integrating the last integral twice by parts, it is not difficult to show that  
22 pa

a

dp

dI

+

−
=  .  

After integration we get ( ) C
a

p
arctgpI +−= , where C is an arbitrary integration constant. We can 

calculate C by noting that ( ) 0=I  in the original integral definition of ( )pg , because the factor xpe−  in the 

integral tends to zero everywhere at →p  (because 0x  throughout the integration interval). So 

( )−= arctgC0  , where we use a plus sign if 0a , and a minus sign if 0a . So,  
2


=C   and we have  

 ( )
a

p
arctgpI −=

2


 

For 0=p  (and therefore 0=
a

p
arctg ) gives us the following remarkable result, called the 

discontinuous Dirichlet integral. Ultimately we see that in both cases the result is the same 


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Example – 2. Calculate the integral 
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Solution. The integral function is continuous at all points of the segment  ;0 , except for  point 

2
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=x  . At this point we have uncertainty of the form 


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Let us transform the integrand expression as follows: 
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 (5) 

In the last integral we denote coefficient 
2

3
 as parameter p . For different values of the parameter p , 

different values of the integral will be obtained. Let’s write the integral in general form.  

( ) ( ) +=



0
cos

cos1ln
x

dx
xppI      (6) 

Thus, we can say that this integral defines a function with respect to the variable p. in equality (6), it makes 

sense to consider p only at 11 − p . Only for such values of p is the argument of the natural logarithm 

greater than zero at all points of the integration segment. This means that the original integral (5) will be 

a special case of the integral (6) at 
2

3
=p . Now we take the derivative with respect to the parameter p: 
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Here the limits of integration do not depend on the variable p. The partial derivative of the integrand with 

respect to the variable p will be a continuous function. Therefore, we can enter the differential under the 

integral sign and calculate it. When integrating. 
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We use the universal integration method. Let 
2

x
tgt = , then 

2
sin

2
coscos 22 xx

x −= . When replacing, you 

need to change the limits integration in the integral. If 0→x  to 0→t , if  →x , to →t .  

 Then 
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( ) CppI += arcsin      (7) 

From here we find C. ( ) 00 =I  means 0=C . The problem statement was that it was necessary to 

calculate a special case of integral (6) for 
2

3
=p  . If ( ) ppI arcsin= . Then 
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Example – 3. Calculate the integral 

( )
 

−

−
1

0
2

2

1

1
dx

x

xarctg
    (8) 

Solution. Let us simplify the integrand expressions by making the following substitution: 

tx sin=  and the boundaries will have the following form  

2
1,00
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=→==→= txtx  and we see that in the first quarter 0cos,0sin  tt . Then   
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Now let’s use Feynman’s method as follows 
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From (9) it is clear that the parameter 1=p . In this case, our is to calculate the integral 1=p , if we 

know that ( ) 00 =I .  

Differentiating with respect to the parameter p we get: 
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Example – 4. Calculate the integral 
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We have obtained a homogeneous differential equation of the second order. 
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Make up a characteristic equation 
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General solution equation is equal 
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CONCLUSIONS  

Integrating functions is a mathematical art. It is 

interesting to calculate them, especially when 

non-standard methods are used in the solution. 

The article uses Feynman’s method to calculate 

some rather complex integrals that cannot be 

integrated in the standard way. 
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