

Journal Website:
<http://sciencebring.com/index.php/ijasr>

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

 Research Article

Tuberculosis: An Old Disease In A Modern World

Submission Date: September 20, 2025, **Accepted Date:** October 12, 2025,

Published Date: November 16, 2025

Crossref doi: <https://doi.org/10.37547/ijasr-05-11-05>

Nargiza Abduvaliyevna Askarovna

Scientific advisor, PhD in Psychology, Associate Professor, Lecturer at the Department of Uzbek and Foreign Languages No. 1, Tashkent State Medical University, Uzbekistan

Xaydaraliyeva Mehribonu

1st-year student at Tashkent State Medical University, Uzbekistan

ABSTRACT

Tuberculosis (TB) is a contagious and chronic disease caused by the microorganism *Mycobacterium tuberculosis*. It predominantly attacks the lungs but can also affect various other organs in the human body. The illness was first identified by the German bacteriologist Dr. Robert Koch in 1882 in Berlin, Germany. Through microscopic observation and cultivation methods, Koch succeeded in isolating the pathogen responsible for the disease, proving that tuberculosis is transmitted by a specific infectious agent. This groundbreaking discovery became a cornerstone in medical microbiology, contributing greatly to the advancement of diagnostic techniques, preventive measures, and therapeutic approaches against TB. Despite progress in medicine, tuberculosis continues to pose a serious public health challenge worldwide.

KEYWORDS

Tuberculosis, *Mycobacterium tuberculosis*, Infectious disease, Pulmonary TB, Extrapulmonary TB, Pathogenesis, Transmission, Diagnosis, Treatment, Prevention.

INTRODUCTION

Tuberculosis (TB) is one of the oldest known and most serious infectious diseases in human history. Evidence of TB has been found in ancient Egyptian mummies, dating back over 4,000 years, showing lesions on the spine and lungs consistent with

tuberculosis. Throughout history, TB was often referred to as “consumption” because the disease seemed to consume the body, causing extreme weight loss and weakness. During the 17th to 19th centuries in Europe, TB became a widespread epidemic, killing millions of people. It was sometimes called the “white plague” due to its

devastating impact. Before the discovery of the causative agent, the origins of TB were misunderstood. People believed it was hereditary, caused by poor living conditions, or spread through “bad air” (miasma theory). The turning point came in 1882, when German physician and microbiologist Dr. Robert Koch identified the bacterium *Mycobacterium tuberculosis*, proving that TB was caused by a specific microorganism. This discovery laid the foundation for modern microbiology and led to the development of diagnostic methods, treatment options, and public health measures to control the disease. I chose the topic of tuberculosis because it is one of the most widespread and serious infectious diseases in the world. Studying TB helps to understand its causes, history, and the importance of early diagnosis and treatment. By exploring this topic, I aim to raise awareness about public health issues and the scientific contributions of researchers like Dr. Robert Koch, who discovered the bacterium causing TB.

Causes and Pathogenesis of Tuberculosis

Causative Agent – *Mycobacterium tuberculosis*: Tuberculosis (TB) is caused by *Mycobacterium tuberculosis*, a slow-growing, rod-shaped, acid-fast bacterium. It is highly resilient, able to survive in dry environments for weeks, and resistant to many common disinfectants. The bacterium primarily infects the lungs but can also spread to other organs via the bloodstream or lymphatic system. *M. tuberculosis* has a complex cell wall containing mycolic acids, which protects it from immune defenses and antibiotics, making TB treatment challenging.

Mode of Transmission: TB spreads mainly through airborne transmission. When a person

with active pulmonary TB coughs, sneezes, or talks, tiny droplets containing the bacteria are released into the air. People nearby can inhale these droplets and become infected. Close, prolonged contact with someone who has active TB increases the risk of transmission. Rarely, TB can spread through ingestion of contaminated food or unpasteurized milk (caused by *Mycobacterium bovis*). TB is not transmitted by casual contact such as shaking hands or touching objects.

Pathogenesis: Once inhaled, the bacteria reach the alveoli of the lungs and are engulfed by alveolar macrophages, immune cells that normally destroy pathogens. However, *M. tuberculosis* can survive and multiply inside macrophages by inhibiting the fusion of lysosomes with phagosomes. The immune system responds by forming granulomas—clusters of immune cells that “wall off” the bacteria. In some cases, the infection remains latent for years without causing symptoms. When the immune system is weakened, latent TB can reactivate, leading to active TB, which causes tissue damage and symptoms.

Impact on the Body

Pulmonary TB: Leads to lung lesions, cavities, chronic cough, fever, night sweats, fatigue, and weight loss. Lung tissue may be destroyed over time, causing severe respiratory problems.

Extrapulmonary TB: The bacteria can spread through the bloodstream to other organs, causing infections in lymph nodes, bones (Pott's disease), kidneys, central nervous system (TB meningitis), and other sites. Extrapulmonary TB is often harder to diagnose and may lead to serious complications if untreated.

Risk Factors: Certain conditions increase the risk of developing TB or reactivating latent TB, including HIV infection, malnutrition, diabetes, smoking, and immunosuppressive therapies. Understanding the causative agent, transmission, and pathogenesis of TB is crucial for effective prevention, early diagnosis, and proper treatment strategies.

Discovery of Tuberculosis and Its Significance.

Robert Koch's Work: In 1882, German physician and microbiologist Dr. Robert Koch discovered the bacterium *Mycobacterium tuberculosis*, the causative agent of tuberculosis. Koch used microscopy, special staining techniques (such as Ziehl-Neelsen stain), and bacterial culture methods to identify and isolate the pathogen.

Importance for Diagnosis and Control: Koch's discovery proved that TB is caused by a specific microorganism, not hereditary or environmental factors as previously believed. This allowed doctors to develop accurate diagnostic methods, implement public health measures, and improve TB prevention and treatment.

Contribution to Medicine: Koch's work laid the foundation for modern microbiology and infectious disease research. His methods and discoveries not only helped control TB but also inspired scientific approaches for studying other infectious diseases, saving millions of lives worldwide.

Treatment and Prevention of Tuberculosis

Treatment: Tuberculosis is treated primarily with antibiotics, such as isoniazid, rifampicin, pyrazinamide, and ethambutol. Treatment usually lasts 6–9 months for drug-sensitive TB. For drug-resistant TB, longer and more complex therapies are required. Modern therapies also include

combination regimens and monitoring to ensure compliance.

Prevention: Preventive measures include vaccination with the BCG (Bacillus Calmette-Guérin) vaccine, especially in children, and public health interventions such as early detection, isolation of active cases, improving ventilation in crowded areas, and raising public awareness.

Current Situation and Statistics: Tuberculosis remains a major global health challenge. According to the World Health Organization (WHO), over 10 million people fell ill with TB in 2023, and approximately 1.6 million people died from the disease. The burden is highest in low- and middle-income countries. Challenges in TB control include drug-resistant strains, limited access to healthcare, HIV co-infection, and delayed diagnosis. Continuous public health efforts and research are essential to reduce TB incidence worldwide.

Psychological Aspects of Tuberculosis

Anxiety and Fear: Patients diagnosed with tuberculosis often experience high levels of anxiety and fear. The contagious nature of the disease, long treatment duration, and potential complications contribute to stress. Anxiety may manifest as insomnia, restlessness, or excessive worrying about health and social stigma.

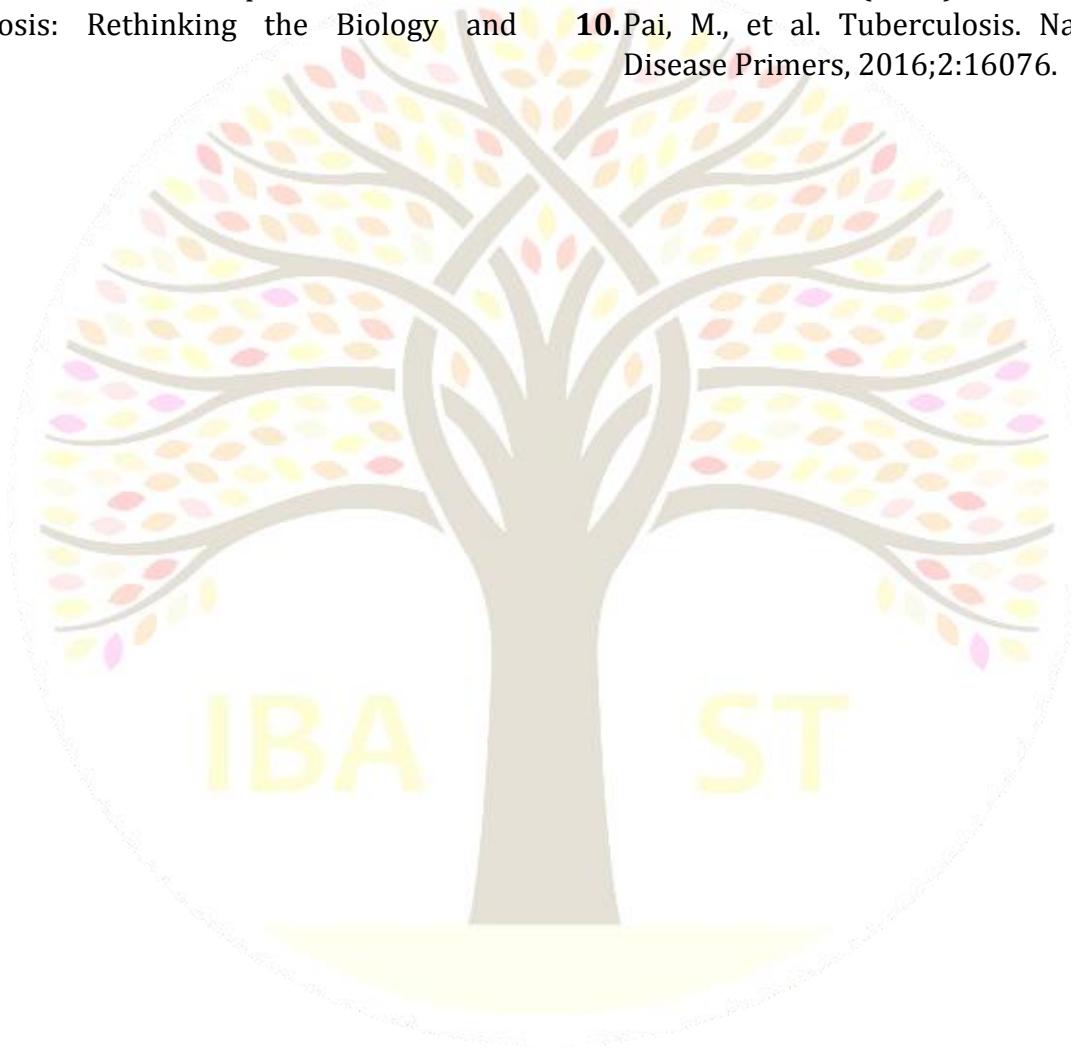
Depression and Low Mood: Chronic illnesses like TB can lead to depression. Patients may feel hopeless due to long-term treatment, isolation from family or work, and physical weakness. Depression can reduce treatment adherence and worsen physical symptoms, creating a vicious cycle.

Social Isolation and Stigma: TB patients often face social stigma due to misconceptions about transmission. They may isolate themselves to avoid infecting others, which can lead to loneliness, sadness, and decreased motivation for recovery. Supportive counseling and education can help reduce these effects.

Psychological Resilience and Motivation: TB patients often face long-term treatment and physical limitations. Developing psychological resilience helps them cope with fatigue, side effects, and social isolation. Encouraging goal-setting, self-monitoring of health progress, and celebrating small recovery milestones enhances motivation and promotes adherence to therapy.

Psychotherapy and Counseling Support: Professional counseling and psychotherapy can help TB patients manage fear, depression, and stigma. Techniques such as cognitive-behavioral therapy (CBT), mindfulness, and relaxation exercises reduce stress, improve mental well-being, and enhance the patient's ability to comply with medical treatment. Peer support groups also provide emotional comfort and shared experiences.

Psychological Conclusion: Tuberculosis not only affects the body but also has a profound impact on the patient's mental and emotional well-being. Anxiety, depression, social isolation, and fear of stigma are common psychological challenges for TB patients. Developing resilience, motivation, and access to professional counseling can significantly improve coping abilities and treatment adherence. Psychological support, combined with medical therapy, is essential for holistic recovery and better quality of life.


CONCLUSION

Tuberculosis (TB) is a longstanding and serious infectious disease that continues to challenge global public health. Caused by *Mycobacterium tuberculosis*, TB primarily affects the lungs but can involve multiple organs. Historical evidence shows that TB has existed for thousands of years, yet it was only in 1882 that Dr. Robert Koch identified the causative bacterium, laying the foundation for modern microbiology. Understanding the disease's pathogenesis, modes of transmission, and risk factors is essential for effective prevention and treatment. Antibiotics, vaccines like BCG, and public health measures have greatly improved TB control. However, drug-resistant strains, limited healthcare access, and co-infections such as HIV continue to pose significant challenges. Studying tuberculosis not only highlights its historical and medical significance but also emphasizes the ongoing need for awareness, early diagnosis, and continuous research to reduce its impact on populations worldwide.

REFERENCES

1. World Health Organization (WHO). Global Tuberculosis Report 2023. Geneva: WHO; 2023.
2. Daniel, T.M. The History of Tuberculosis. *Respiratory Medicine*, 2006;100(11):1862–1870.
3. Kaufmann, S.H.E., et al. *Tuberculosis: Pathogenesis, Protection, and Control*. ASM Press; 2005.
4. Koch, R. Die Aetiologie der Tuberkulose. *Berliner Klinische Wochenschrift*, 1882;19:221–230.

5. Grange, J.M. *Mycobacterium tuberculosis*: The Etiologic Agent of Tuberculosis. *Microbes and Infection*, 1999;1(5):415–423.
6. Corbett, E.L., et al. Epidemiology of Tuberculosis in the Modern Era. *The Lancet Infectious Diseases*, 2003;3:81–88.
7. Barry, C.E., et al. The Spectrum of Latent Tuberculosis: Rethinking the Biology and Intervention Strategies. *Nature Reviews Microbiology*, 2009;7:845–855.
8. Flynn, J.L., & Chan, J. Immunology of Tuberculosis. *Annual Review of Immunology*, 2001;19:93–129.
9. Lawn, S.D., & Zumla, A.I. Tuberculosis. *The Lancet*, 2011;378(9785):57–72.
10. Pai, M., et al. Tuberculosis. *Nature Reviews Disease Primers*, 2016;2:16076.

