NON-PARAMETRIC METHODS. K-NEAREST NEIGHBORS MODEL

Authors

  • Salimov Jamshid Obid , O‘G‘Li Assistant Jizzakh Branch Of National University Of Uzbekistan
  • Xudoyqulov Diyorbek Shakar O‘G‘Li Student Jizzakh Branch Of National University Of Uzbekistan
  • Avazov Asadbek Egamberdi O‘G‘Li Student Jizzakh Branch Of National University Of Uzbekistan

DOI:

https://doi.org/10.37547/ijasr-03-12-04

Keywords:

Dataset, trainset, hyperparameters

Abstract

One of the machine learning algorithms k-Nearest Neighbors algorithm is widely used for classification tasks in the construction of artificial intelligence programs. In the k-NN algorithm, when determining which class a new object belongs to, the distances from this object to all objects are measured, and if there are more objects belonging to which class among the nearest k selected objects, the new object is considered to belong to this class, which makes it makes it an intuitive and powerful tool for solving complex problems. In this article, a model for determining whether a patient is diagnosed with breast cancer or not is created using the k-NN algorithm. This problem is calculated using binary classification.

Downloads

Download data is not yet available.

References

Amrullayevich K. A., Obid o'g'li S. J. ELEKTRON TALIM MUHITIDA TALABALARDA AXBOROT BILAN ISHLASH KOMPETENTLIKNI SHAKLLANTIRISH //International Journal of Contemporary Scientific and Technical Research. – 2022. – С. 641-645.

Obid o’g A. S. J. et al. Numpy Library Capabilities. Vectorized Calculation In Numpy Va Type Of Information //Eurasian Research Bulletin. – 2022. – Т. 15. – С. 132-137.

Javlon X. et al. Классификатор движения рук с использованием биомиметического распознавания образов с помощью сверточных нейронных сетей с методом динамического порога для извлечения движения с использованием датчиков EF //Journal of new century innovations. – 2022. – Т. 19. – №. 6. – С. 352-357.

Фитратович В. и др. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МНОГОФАЗНОЙ ФИЛЬТРАЦИИ В НЕФТЕГАЗОВОМ ПЛАСТЕ ПРИ ЕГО ЗАВОДНЕНИИ //INTERNATIONAL CONFERENCES ON LEARNING AND TEACHING. – 2022. – Т. 1. – №. 4. – С. 520-525.

Jamshid S. ENTROPY EVALUATION CRITERION IN DECISION TREE ALGORITHM EVALUATION //International Journal of Contemporary Scientific and Technical Research. – 2023. – С. 236-239.

Салимов Ж., Абулаева А. Классификации дерева в машинном обучении и гиперпараметрах //Информатика и инженерные технологии. – 2023. – Т. 1. – №. 1. – С. 71-79.

Obid o’g’li S. J., Nodir o'g'li X. A., Jasurjonovich B. J. SUPERVISED LEARNING REGRESSION ALGORITHM SIMPLE LINEAR REGRESSION //Academia Science Repository. – 2023. – Т. 4. – №. 04. – С. 69-76.

Downloads

Published

2023-12-09

How to Cite

NON-PARAMETRIC METHODS. K-NEAREST NEIGHBORS MODEL. (2023). International Journal of Advance Scientific Research, 3(12), 18-25. https://doi.org/10.37547/ijasr-03-12-04