Articles | Open Access | https://doi.org/10.37547/ijasr-03-10-29

INFLUENCE OF SHOCK LOADING ON THE INFINITE PIECEWISE-HOMOGENEOUS TWO-LAYER PLATE

M.L. Djalilov Fergana Branch Of The Tashkent University Of Information Technologies Named After Muhammad Al-Khorazmiy, Fergana, Republic Of Uzbekistan

Abstract

This article examines the effect of normal load on an infinite piecewise homogeneous two-layer plate when the materials of the upper and lower layers of the plate are elastic. The transverse displacement of the points of the contact plane of a two-layer plate is determined, satisfying the approximate equation obtained in the work, replacing only the viscoelastic operators with elastic Lame coefficients, respectively. For a rectangular infinite two-layer piecewise homogeneous plate under non-zero initial conditions, the frequencies of natural oscillations are calculated, and an analytical solution to this problem is constructed. The theoretical results obtained for solving dynamic problems of transverse vibration of piecewise homogeneous two-layer plates of constant thickness, taking into account the elastic properties of their material, make it possible to more accurately calculate the transverse displacement of the points of the contact plane of the plates under normal external loads.

Keywords

Vibration equations, two-layer plate, displacement

References

Жалилов, М. Л., & Хаджиева, С. С. (2020, November). Уравнения поперечного колебания двухслойной вязкоупругой пластинки постоянной толщины. In The 3rd International scientific and practical conference “World science: problems, prospects and innovations”(November 25-27, 2020) Perfect Publishing, Toronto, Canada. 2020. 1082 p. (p. 478).

Джалилов М.Л. Колебания прямоугольный и безграничной упругой двухслойной пластинки – Деп. В ВНИИНТПИ, 8.02.90-№10612. 7 с.

М.Л. Джалилов. С.Ф. Эргашев. (2017). Общее решение задачи для кусочно-однородной двухслойной среды постоянной толщины. НТЖ ФерПИ ( STJ FerPI), 21(4).

Филиппов, И. Г., & Егорычев, О. А. (1983). Волновые процессы в линейных вязкоупругих средах. М.: Машиностроение, 270, 320.

Юлдашев, Б. С., Муминов, Р. А., Максудов, А. У., Умаралиев, Н., & Джалилов, М. Л. (2020). Прогноз природных катастроф-землетрясений, методом контроля вариации интенсивности потоков нейтронов и заряженных частиц. И прикладные вопросы физики fundamental and applied problems of physics, 125.

Achenbach, J. D. (1969). An asymptotic method to analyze the vibrations of an elastic layer. pp. 37–46.

Rakhimov, R. H., & Umaraliev Н, D. M. (2018). Fluctuations of two-layer plates of a constant thickness. Computational Nanotechnology, (2), 2313.

Brunelle, E. J. (1970). The statics and dynamics of a transversely isotropic Timoshenko beam. Journal of Composite Materials, 4(3), 404-416.

Callahan, W. R. (1956). On the flexural vibrations of circular and elliptical plates. Quarterly of Applied Mathematics, 13(4), 371-380.

Dong, S. B. (1966). Analysis of laminated shells of revolution. Journal of the Engineering Mechanics Division, 92(6), 135-155.

Рахимов, Р. Х., Умаралиев, Н., & Джалилов, М. Л. (2018). Колебания двухслойных пластин постоянной толщины. Computational nanotechnology, (2), 52-67.

Рахимов, Р. Х., Умаралиев, Н., Джалилов, М. Л., & Максудов, А. У. (2018). Регрессионные модели для прогнозирования землетрясений. Computational nanotechnology, (2), 40-45.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

INFLUENCE OF SHOCK LOADING ON THE INFINITE PIECEWISE-HOMOGENEOUS TWO-LAYER PLATE. (2023). International Journal of Advance Scientific Research, 3(10), 175-180. https://doi.org/10.37547/ijasr-03-10-29