MECHANISM OF PROPANE-BUTANE FRACTION DECOMPOSITION PROCESS INTO LOW MOLECULAR SATURATED AND UNSATURATED HYDROCARBONS
DOI:
https://doi.org/10.37547/ijasr-04-12-52Keywords:
Propane-butane fractions, hydrocarbon decomposition, catalytic processAbstract
The decomposition of propane-butane fractions into low molecular weight saturated and unsaturated hydrocarbons is a key process in petrochemical production. This study explores the kinetic parameters and reaction mechanisms using reactors designed for impulse and continuous flow operations. The results indicate that the decomposition reactions follow first-order kinetics under specific experimental conditions. Conducted at temperatures ranging from 400°C to 700°C with catalysts, the experiments reveal that the process occurs at two distinct active catalytic sites (Z and Z). The mechanism involves the formation of surface radical complexes (C-Z), which govern the reaction pathways. Depending on the stability of these complexes, the process proceeds through either sequential hydrogen detachment, leading to carbon formation on the catalyst surface, or hydrogen recombination from the gas phase with the C-Z complex, resulting in methane production. This study provides valuable insights into the decomposition mechanisms of propane-butane fractions and lays the groundwork for optimizing catalytic processes to enhance the yield of desired low molecular weight hydrocarbons.
Downloads
References
Al-Fatesh, A.S., Fakeeha, A.H., Khan, W.U., Ibrahim, A.A., He, S. and Seshan, K., 2016. Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi-and tri-metallic catalysts. International Journal of Hydrogen Energy, 41(48), pp.22932-22940.
Chesnokov, V.V. and Chichkan, A.S., 2009. Production of hydrogen by methane catalytic decomposition over Ni–Cu–Fe/Al2O3 catalyst. international journal of hydrogen energy, 34(7), pp.2979-2985.
Swesi, Y., Kerleau, P., Pitault, I., Heurtaux, F. and Ronze, D., 2007. Purification of hydrogen from hydrocarbons by adsorption for vehicle application. Separation and purification technology, 56(1), pp.25-37.
Shelepova, E.V., Vedyagin, A.A., Mishakov, I.V. and Noskov, A.S., 2015. Simulation of hydrogen and propylene coproduction in a catalytic membrane reactor. International Journal of Hydrogen Energy, 40(8), pp.3592-3598.
Newborough, M. and Cooley, G., 2020. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020(11), pp.16-22.
Silva, R.R., Oliveira, H.A., Guarino, A.C., Toledo, B.B., Moura, M.B., Oliveira, B.T. and Passos, F.B., 2016. Effect of support on methane decomposition for hydrogen production over cobalt catalysts. International Journal of Hydrogen Energy, 41(16), pp.6763-6772.
Muhammad, A.F.A.S., Awad, A., Saidur, R., Masiran, N., Salam, A. and Abdullah, B., 2018. Recent advances in cleaner hydrogen productions via thermo-catalytic decomposition of methane: Admixture with hydrocarbon. international journal of hydrogen energy, 43(41), pp.18713-18734.
Jian, X., Jiang, M., Zhou, Z., Zeng, Q., Lu, J., Wang, D., Zhu, J., Gou, J., Wang, Y., Hui, D. and Yang, M., 2012. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. Acs Nano, 6(10), pp.8611-8619.
Simon, A., Seyring, M., Kämnitz, S., Richter, H., Voigt, I., Rettenmayr, M. and Ritter, U., 2015. Carbon nanotubes and carbon nanofibers fabricated on tubular porous Al2O3 substrates. Carbon, 90, pp.25-33.
Bayat, N., Rezaei, M. and Meshkani, F., 2016. Methane decomposition over Ni–Fe/Al2O3 catalysts for the production of COx-free hydrogen and carbon nanofiber. International journal of hydrogen energy, 41(3), pp.1574-1584.
Fakeeha, A.H., Ibrahim, A.A., Khan, W.U., Seshan, K., Al Otaibi, R.L. and Al-Fatesh, A.S., 2018. Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst. Arabian Journal of Chemistry, 11(3), pp.405-414.
Shen, Y. and Lua, A.C., 2015. Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Applied Catalysis B: Environmental, 164, pp.61-69.
Strel’tsov, I.A., Vinokurova, O.B., Tokareva, I.V., Mishakov, I.V., Isupov, V.P., Shubin, Y.V. and Vedyagin, A.A., 2014. Effect of the nature of a textural promoter on the catalytic properties of a nickel-copper catalyst for hydrocarbon processing in the production of carbon nanofibers. Catalysis in industry, 6, pp.176-181.
Ping, D., Wang, C., Dong, X. and Dong, Y., 2016. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition. Applied Surface Science, 369, pp.299-307.
Karaismailoglu, M., Figen, H.E. and Baykara, S.Z., 2019. Hydrogen production by catalytic methane decomposition over yttria-doped nickel-based catalysts. International Journal of Hydrogen Energy, 44(20), pp.9922-9929.
Berndt, F.M. and Perez-Lopez, O.W., 2017. Catalytic decomposition of methane over Ni/SiO 2: influence of Cu addition. Reaction Kinetics, Mechanisms and Catalysis, 120, pp.181-193.
Streltsov, I.A., Mishakov, I.V., Vedyagin, A.A. and Melgunov, M.S., 2014. Synthesis of Carbon Nanomaterials from Hydrocarbon Raw Material on Ni/SBA-15 Catalyst. Chemistry for Sustainable Development, 22(2), pp.185-192.
Kibria, M.G., Masuk, N.I., Safayet, R., Nguyen, H.Q. and Mourshed, M., 2023. Plastic waste: challenges and opportunities to mitigate pollution and effective management. International Journal of Environmental Research, 17(1), p.20.
Chesnokov, V.V. and Buyanov, R.A., 2000. The formation of carbon filaments upon the decomposition of hydrocarbons catalysed by iron subgroup metals and their alloys. Russian Chemical Reviews, 69(7), pp.623-638.
Bauman, Y.I., Lysakova, A.S., Rudnev, A.V., Mishakov, I.V., Shubin, Y.V., Vedyagin, A.A. and Buyanov, R.A., 2014. Synthesis of nanostructured carbon fibers from chlorohydrocarbons over Bulk Ni-Cr Alloys. Nanotechnologies in Russia, 9, pp.380-385.
An, L., Kou, Z., Li, R. and Zhao, Z., 2024. Research Progress in Fuel Oil Production by Catalytic Pyrolysis Technologies of Waste Plastics. Catalysts, 14(3), p.212.
Dai, L., Zhou, N., Lv, Y., Cheng, Y., Wang, Y., Liu, Y., Cobb, K., Chen, P., Lei, H. and Ruan, R., 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science, 93, p.101021.
Pilapitiya, P.N.T. and Ratnayake, A.S., 2024. The world of plastic waste: a review. Cleaner Materials, p.100220.
Haider, T.P., Völker, C., Kramm, J., Landfester, K. and Wurm, F.R., 2019. Plastics of the future? The impact of biodegradable polymers on the environment and society. Angewandte Chemie International Edition, 58(1), pp.50-62.
Chandran, M., Tamilkolundu, S. and Murugesan, C., 2020. Conversion of plastic waste to fuel. In Plastic waste and recycling (pp. 385-399). Academic Press.
Padhan, R.K. and Sreeram, A., 2018. Enhancement of storage stability and rheological properties of polyethene (PE) modified asphalt using cross-linking and reactive polymer-based additives. Construction and Building Materials, 188, pp.772-780.
Tsuchimoto, I. and Kajikawa, Y., 2022. Recycling of plastic waste: a systematic review using bibliometric analysis. Sustainability, 14(24), p.16340.
Ragaert, K., Delva, L. and Van Geem, K., 2017. Mechanical and chemical recycling of solid plastic waste. Waste management, 69, pp.24-58.
Radhakrishnan, K., Kumar, P.S., Rangasamy, G., Perumal, L.P., Sanaulla, S., Nilavendhan, S., Manivasagan, V. and Saranya, K., 2023. A critical review on pyrolysis method as sustainable conversion of waste plastics into fuels. Fuel, 337, p.126890.
Shivasharana, C.T. and Kesti, S.S., 2019. Physical and chemical characterization of low-density polyethene and high-density polyethene. Journal of Advanced Scientific Research, 10(03), pp.30-34.
Olabisi, O. and Adewale, K. eds., 2016. Handbook of thermoplastics. CRC press.
Zhang, Y., Fu, Z., Wang, W., Ji, G., Zhao, M. and Li, A., 2021. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste. ACS Sustainable Chemistry & Engineering, 10(1), pp.91-103.
Vollmer, I., Jenks, M.J., Roelands, M.C., White, R.J., Van Harmelen, T., De Wild, P., van Der Laan, G.P., Meirer, F., Keurentjes, J.T. and Weckhuysen, B.M., 2020. Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 59(36), pp.15402-15423.
Mishra, R., Kumar, A., Singh, E. and Kumar, S., 2023. Recent research advancements in catalytic pyrolysis of plastic waste. ACS Sustainable Chemistry & Engineering, 11(6), pp.2033-2049.
Wu, Y., Wang, K., Wei, B., Yang, H., Jin, L. and Hu, H., 2022. Pyrolysis behaviour of low-density polyethene over HZSM-5 via rapid infrared heating. Science of The Total Environment, 806, p.151287.
Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M. and Nizami, A.S., 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, pp.822-838.
Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z. and Yoshikawa, K., 2014. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia, 47, pp.180-188.
López, A., De Marco, I., Caballero, B.M., Adrados, A. and Laresgoiti, M.F., 2011. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste management, 31(8), pp.1852-1858.
Sivagami, K., Kumar, K.V., Tamizhdurai, P., Govindarajan, D., Kumar, M. and Nambi, I., 2022. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. RSC advances, 12(13), pp.7612-7620.
Fan, L., Liu, L., Xiao, Z., Su, Z., Huang, P., Peng, H., Lv, S., Jiang, H., Ruan, R., Chen, P. and Zhou, W., 2021. Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethene in the presence/absence of HZSM-5. Energy, 228, p.120612.
Kholmirzayeva K., Fayzullayev N. Microscopic interpretation of the process of obtaining nanocarbon from methane using the (CuO)x*(CoO)y*(NiO)z*(Fe2O3)k*(MoO3)l/HSZ catalyst. AIP Conference Proceedings. AIP Publishing, 2023. 2789. 1.
Fayzullaev, N. and Mamirzayev, M., 2023, June. Mathematical modelling of kinetics and reactors of methane nanocarbon reaction. In AIP Conference Proceedings (Vol. 2789, No. 1). AIP Publishing.
Omanov, B., Fayzullaev, N., Khatamova, M., Ruziqulova, N. and Rustamov, S., 2023, June. Energy and resource-saving technology of vinyl acetate production from acetylene. In AIP Conference Proceedings (Vol. 2789, No. 1). AIP Publishing.
Fayzullaev, N., Tursunova, N. and Xolmirzayeva, H., 2023, June. Kinetics and mechanisms of methane oxycondensation reaction. In AIP Conference Proceedings (Vol. 2789, No. 1). AIP Publishing.
Tursunova, N. and Fayzullaev, N., 2023, June. Study of the effect of different factors on the catalytic oxycondension reaction of methane. In AIP Conference Proceedings (Vol. 2789, No. 1). AIP Publishing.
Kholmirzaeva, H.N., Fayzullaev, N.I., Normurodov, O.O. and Haydarov, G.S., 2023. Sustainable Nanocarbon Synthesis from Locally Available Natural Raw Materials: Versatile Properties and Wide-Ranging Applications. In E3S Web of Conferences (Vol. 449, p. 06015). EDP Sciences.
Fayzullaev, N. and Pardayeva, S., 2023. Natural gas drying technology. In E3S Web of Conferences (Vol. 462, p. 03010). EDP Sciences.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sanjar H. Saidqulov

This work is licensed under a Creative Commons Attribution 4.0 International License.