COMPARISON OF MODELS OF MAGNETIZATION CURVES AND HYSTERESIS LOOPS ACCORDING TO THE GILES-ATHERTON MODEL FOR SOFT MAGNETIC AMORPHOUS ALLOYS
Abstract
The subject of research in the article is ferromagnetic soft magnetic amorphous materials and alloys, which are used in power sources of automated control systems, and in vehicle electrical installations. The aim of the work is an objective comparison of two magnetization models for soft magnetic amorphous alloys - the main magnetization curve using approximation functions and the Giles-Atherton hysteresis loop model. In the study, the least squares method was used to optimize the main magnetization curve and the Giles-Atherton hysteresis loop optimization method with the aim of its maximum coincidence with the experimentally obtained loop. Experimental and reference data for common types of magnetically soft amorphous alloys were used for modeling. As a criterion of model accuracy for both modeling methods, the relative error in determining the magnetic induction value was chosen, and the experimental value obtained from the real hysteresis loop of a magnetically soft amorphous alloy was taken as its exact value, and the approximate value was taken from calculations of the magnetic induction value using the methods of approximating the magnetization curve and simulation of the hysteresis loop using the Giles-Atherton method. As a result of the research, it was revealed that both models of magnetization of magnetically soft amorphous materials give simulation results similar in accuracy. The obtained results of the study can be used to select an appropriate magnetization model for the mathematical description of ferromagnetic devices using magnetically soft amorphous metals and alloys. The final conclusion about the advantages of a particular model can only be made on the basis of the ultimate goals of the analysis.
Keywords
Vehicle power supply, magnetization curve, approximating
References
Bedritskiy I.M. Comparative analysis of analytical expressions for approximating the magnetization curves of electrical steels.– Proceedings of higher educational institutions. Electro mechanics. 2011. №6. С.39-42
Bedritskiy I.M., Juraeva K.K., Bazarov L.H. Evaluation of the stability of the parametric phase number converter.// International Scientific Seminar. Yu.N. Rudenko, Kazan, 2020.–s.12-18
Bedritskiy I.M., Juraeva K.K., Bazarov L.H., Saidvaliev S.S. Using of the parametric nonlinear LC-circuitsin stabilized converters of the number of phases.// Jour of Adv Research in Dynamical & Control Systems, Vol. 12, Issue-06, 2020.–s.98-107
D. Jiles, D. Atherton. Theory of ferromagnetic hysteresis///Journal of Magnetism and Magnetic Materials. Pp.48-60.–1986
D. Jiles, J. Thoelke, and M. Devine, “Numerical determination of hysteresis parameters for the modeling of magnetic properties using theory of erromagnetic hysteresis,” IEEE Transactions on magnetics, pp. 27–35, 1992
G. Bertotti. Hysteresis in magnetism. San Diego, Academic Press (1998) 558 p.
I. D. Mayergoyz. IEEE Trans. Magn. 22 (5), 603 (1986).
J. V. Leite, S. L. Avila, N. J. Batistela, W. P. Carpes, N. Sadowski, P. Kuo-Peng, and J. P. A. Bastos, “Real coded genetic algorithm for jilesatherton model harameters identification,” IEEE Transactions on magnetics, vol. 40, pp. 888–891, 2004
John H. Chan, Andrei Vladimirescu, Xiao-Chun Gao, Peter Liebmann and John Valainis. Nonlinear Transformer Model for Circuit Simulation. TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL.10.1991. № 4
Romain Marion, Riccardo Scorretti, Nicolas Siauve, Marie-Ange Raulet , Laurent Krähenbühl. Identification of Jiles-Atherton model parameters using Particle Swarm Optimization.// Compumag 2007, Jun 2007, Aachen, Germany. pp.1003. hal-00179710s/1-4
V. Yu. Vvedenskiy, E. N. Tokmakova. Model of the hysteresis loop of soft-magnetic amorphous alloys with the usage of a modified linear fractional function./ Letters on Materials 11 (2), 2021 pp. 158-163
Amorfniye magnitomyagkiye splavi i ix primeneniye v istochnikax vtorichnogo elektropitaniya: Spravochnoye posobiye/ V.I. Xandogin, A.V. Raykova, N.N. Yershov i dr..; pod red. Xandogina V.I. –M.: 1990.– 170 s.
Amorfniye metalli. Sudzuki K., Fudzimori X., Xasimoto K./ Pod red. Masumoto S..Per s yapon.–M.: Metallurgiya, 1987.–328 s.
Bedritskiy I.M. Parametricheskiye istochniki vtorichnogo elektropitaniya s ferromagnitnimi elementami. Tashkent.: «Innovatsion rivojlanish nashriyot-manbaa uyi».–2020.–s. 164
Володин В. Гистерезисная модел нелинейной индуктивности симулятора LNspice//Силовая электроника.2010.№1. с. 158-163
Volodin S. Modelirovaniye slojnix elektromagnitnix komponentov pri pomoshi SPICE- simulyatora LTspice/SwCadIII. //Komponenti i texnologii, №4, 2008 g., s.178-133
Kurbatova YE.A. MATLAB7. Samouchitel. M.: «Vilyams», 2006.-256 s.
Roginskaya L.E., Gorbunov A.S. Obzor primenyayemix mnogofaznix transformatornix preobrazovateley chisla faz.//Sovremenniye tendensii razvitiya nauki i texnologiy. 2016. № 9-2. S. 24-26.
Roginskaya L.E., Gorbunov A.S.Matematicheskaya model mnogofaznogo transformatornogo preobrazovatelya chisla faz//Vestnik nauchnix konferensiy. 2017. № 9-3 (25). S. 170-172.
Filimonov S.I. Razrabotka imitatsionnoy modeli petli gisterezisa v programmnom komplekse MATLAB/Vestnik BGTU im. V.G. Shuxova 2016, №2. c.7-15
Chernix I.V. Modelirovaniye elektrotexnicheskix ustroystv v MATLAB, SimPowerSystems i Simulink. 2007.-s.278
Article Statistics
Downloads
Copyright License
Copyright (c) 2023 Bedritsky I.M., Bazarov L.Kh., Zhuraeva K.K., Mirasadov M.Zh.
This work is licensed under a Creative Commons Attribution 4.0 International License.